
TruCluster Production Server
Software
Application Programming Interfaces

Part Number: AA-QL8PC-TE

January 1998

Product Version: TruCluster Production Server
Software Version 1.5

Operating System and Version: DIGITAL UNIX Version 4.0D

This manual describes the application programming interfaces (APIs) of
the TruCluster Production Server Software product.

Digital Equipment Corporation
Maynard, Massachusetts

© Digital Equipment Corporation 1998
All rights reserved.

The following are trademarks of Digital Equipment Corporation: ALL–IN–1, Alpha AXP,
AlphaGeneration, AlphaServer, AltaVista, ATMworks, AXP, Bookreader, CDA, DDIS, DEC, DEC Ada,
DEC Fortran, DEC FUSE, DECnet, DECstation, DECsystem, DECterm, DECUS, DECwindows, DTIF,
Massbus, MicroVAX, OpenVMS, POLYCENTER, Q–bus, StorageWorks, TruCluster, ULTRIX, ULTRIX
Mail Connection, ULTRIX Worksystem Software, UNIBUS, VAX, VAXstation, VMS, XUI, and the
DIGITAL logo.

Prestoserve is a trademark of Legato Systems, Inc.; the trademark and software are licensed to Digital
Equipment Corporation by Legato Systems, Inc. NFS is a registered trademark of Sun Microsystems, Inc.
Open Software Foundation, OSF, OSF/1, OSF/Motif, and Motif are trademarks of the Open Software
Foundation, Inc. UNIX is a registered trademark in the United States and other countries, licensed
exclusively through X/Open Company, Ltd. MEMORY CHANNEL is a trademark of Encore Computer
Corporation.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set
forth in subparagraph (c) (1) (ii).

Digital Equipment Corporation makes no representations that the use of its products in the manner
described in this publication will not infringe on existing or future patent rights, nor do the descriptions
contained in this publication imply the granting of licenses to make, use, or sell equipment or software in
accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only pursuant to a
valid written license from DIGITAL or an authorized sublicensor.

Digital conducts its business in a manner that conserves the environment and protects the safety and
health of its employees, customers, and the community.

Contents

About This Manual

1 Distributed Lock Manager
1.1 Overview 1–1
1.2 Resources 1–4
1.2.1 Resource Granularity 1–4
1.2.2 Namespaces 1–5
1.2.3 Uniquely Identifying Resources 1–6
1.3 Using Locks 1–7
1.3.1 Lock Modes 1–8
1.3.2 Levels of Locking and Compatibility 1–9
1.3.3 Lock Management Queues 1–10
1.3.4 Lock Conversions 1–11
1.3.5 Deadlock Detection 1–11
1.4 Dequeuing Locks 1–13
1.4.1 Canceling a Conversion Request 1–14
1.5 Advanced Locking Techniques 1–15
1.5.1 Asynchronous Completion of a Lock Request 1–15
1.5.2 Notification of Synchronous Completion 1–16
1.5.3 Blocking Notifications 1–16
1.5.4 Lock Conversions 1–18
1.5.4.1 Queuing Lock Conversions 1–18
1.5.4.2 Forced Queuing of Conversions 1–18
1.5.5 Parent Locks 1–19
1.5.6 Lock Value Blocks 1–20
1.6 Local Buffer Caching Using DLM Functions 1–21
1.6.1 Using the Lock Value Block 1–22
1.6.2 Using Blocking Notifications 1–22
1.6.2.1 Deferring Buffer Writes 1–22
1.6.2.2 Buffer Caching 1–23
1.6.3 Choosing a Buffer Caching Technique 1–23

Contents iii

1.7 Distributed Lock Manager Functions Code Example 1–24

2 Cluster Information Services
2.1 Overview 2–1
2.2 Using the TruCluster Production Server Information

Services 2–2

Index

Examples
1–1 Locking, Lock Value Blocks, and Lock Conversion 1–25
2–1 Using the clu_get_cluster and clu_get_qdisk Functions 2–3
2–2 Obtaining Information from Cluster Member Systems 2–5

Figures
1–1 Model Database 1–5
1–2 Three Lock Queues 1–10
1–3 Conversion Deadlock 1–12
1–4 Multiple Resource Deadlock 1–13

Tables
1–1 Distributed Lock Manager Functions 1–2
1–2 Lock Modes 1–8
1–3 Compatibility of Lock Modes 1–9
1–4 Using the DLM_DEQALL Flag in a dlm_unlock Function

Call 1–14
1–5 Conversions Allowed When the DLM_QUECVT Flag Is

Specified 1–19
1–6 Effect of Lock Conversion on Lock Value Block 1–20
2–1 Cluster Information Services 2–1

iv Contents

About This Manual

This manual describes the application programming interfaces (APIs) of
the TruClusterTM Production Server Software product.

Audience

This manual is for programmers writing distributed applications that need
the synchronization services of the distributed lock manager (DLM) or the
cluster information services.

Organization

This manual contains two chapters and an index. A brief description
follows:

Chapter 1 Describes how to use the features of the DLM.

Chapter 2 Describes how to use the cluster information services.

Related Documents

Consult the following TruCluster Software Products manuals for assistance
in cluster configuration, installation, and administration tasks:

• TruCluster Software Products Release Notes—Documents known
restrictions and other important information about the Production
Server.

• TruCluster Software Products Hardware Configuration—Describes how
to set up the processors that are to become cluster members, and how
to configure cluster shared storage.

• TruCluster Software Products Software Installation—Describes how to
install the Production Server on the systems that are to participate in
the cluster.

• TruCluster Software Products Administration—Describes
cluster-specific administration tasks, such as those required to set up
an available server environment (ASE) within a cluster. It also shows
how to configure, start, and manage distributed raw disk (DRD)
services and other available services.

About This Manual v

• TruCluster Production Server Software MEMORY CHANNEL Application
Programming Interfaces—Describes the application programming
interfaces that allow programming to the features of the MEMORY
CHANNELTM hardware.

Reader’s Comments

DIGITAL welcomes any comments and suggestions you have on this and
other DIGITAL UNIX manuals.

You can send your comments in the following ways:

• Fax: 603-884-0120 Attn: UBPG Publications, ZKO3-3/Y32

• Internet electronic mail: readers_comment@zk3.dec.com

A Reader’s Comment form is located on your system in the following
location:

/usr/doc/readers_comment.txt

• Mail:

Digital Equipment Corporation
UBPG Publications Manager
ZKO3-3/Y32
110 Spit Brook Road
Nashua, NH 03062-9987

A Reader’s Comment form is located in the back of each printed
manual. The form is postage paid if you mail it in the United States.

Please include the following information along with your comments:

• The full title of the book and the order number. (The order number is
printed on the title page of this book and on its back cover.)

• The section numbers and page numbers of the information on which
you are commenting.

• The version of DIGITAL UNIX that you are using.

• If known, the type of processor that is running the DIGITAL UNIX
software.

The DIGITAL UNIX Publications group cannot respond to system problems
or technical support inquiries. Please address technical questions to your
local system vendor or to the appropriate DIGITAL technical support office.
Information provided with the software media explains how to send
problem reports to DIGITAL.

vi About This Manual

Conventions

The following typographical conventions are used in this manual:

%
$ A percent sign represents the C shell system

prompt. A dollar sign represents the system prompt
for the Bourne, Korn, and POSIX shells.

A number sign represents the superuser prompt.

% cat Boldface type in interactive examples indicates
typed user input.

file Italic (slanted) type indicates variable values,
placeholders, and function argument names.

[|]
{ | } In syntax definitions, brackets indicate items that

are optional and braces indicate items that are
required. Vertical bars separating items inside
brackets or braces indicate that you choose one item
from among those listed.

. . . In syntax definitions, a horizontal ellipsis indicates
that the preceding item can be repeated one or
more times.

cat (1) A cross-reference to a reference page includes the
appropriate section number in parentheses. For
example, cat (1) indicates that you can find
information on the cat command in Section 1 of the
reference pages.

Return In an example, a key name enclosed in a box
indicates that you press that key.

Ctrl/x This symbol indicates that you hold down the first
named key while pressing the key or mouse button
that follows the slash. In examples, this key
combination is enclosed in a box (for example,
Ctrl/C).

About This Manual vii

1
Distributed Lock Manager

This chapter describes how to use the distributed lock manager (DLM) to
synchronize access to shared resources in a cluster. It contains the
following discussions:

• How the DLM synchronizes the accesses of multiple processes to a
specific resource (Section 1.1).

• The concepts of resources, resource granularity, namespaces, resource
names, and lock groups (Section 1.2).

• The concepts of locks, lock modes, lock compatibility, lock management
queues, lock conversions, and deadlock detection (Section 1.3).

• How to use the dlm_unlock function to dequeue lock requests and the
dlm_cancel function to cancel lock conversion requests (Section 1.4).

• Specialized locking techniques, such as lock request completion, the
expediting of lock requests, blocking notifications, lock conversions,
parent locks and sublocks, and lock value blocks (Section 1.5).

• How applications can perform local buffer caching (Section 1.6).

Section 1.7 provides a code example showing the basic DLM operations.

1.1 Overview
The distributed lock manager (DLM) provides functions that allow
cooperating processes in a cluster to synchronize access to a shared
resource, such as a raw disk device, a file, or a program. For the DLM to
effectively synchronize access to a shared resource, all processes in the
cluster that share the resource must use DLM functions to control access to
the resource.

DLM functions allow callers to:

• Request a new lock on a resource

• Release a lock or group of locks

• Convert the mode of an existing lock

• Cancel a lock conversion request

• Wait for a lock request to be granted, or continue operation and be
notified asynchronously of the request’s completion

Distributed Lock Manager 1–1

• Receive asynchronous notification when a lock granted to the caller is
blocking another lock request

Table 1–1 lists the functions the DLM provides. These functions are
available in the libdlm library for use by applications.

Table 1–1: Distributed Lock Manager Functions

Function Description

dlm_cancel Cancels a lock conversion request

dlm_cvt Synchronously converts an existing lock to a new mode

dlm_detach Detaches a process from all namespaces

dlm_get_lkinfo Obtains information about a lock request associated
with a given process

dlm_get_rsbinfo Obtains locking information about resources managed
by the DLM

dlm_glc_attach Attaches to an existing process lock group

dlm_glc_create Creates a group lock container

dlm_glc_destroy Destroys a group lock container

dlm_glc_detach Detaches from a process lock group

dlm_lock Synchronously requests a lock on a named resource

dlm_locktp Synchronously requests a lock on a named resource,
using group locks and/or transaction IDs

dlm_notify Polls for outstanding completion and blocking
notifications

dlm_nsjoin Joins the specified namespace

dlm_nsleave Leaves the specified namespace

dlm_perrno Prints the message text associated with a given DLM
message ID

dlm_perror Prints the message text associated with a given DLM
message ID, plus a caller-specified message string

dlm_quecvt Asynchronously converts an existing lock to a new
mode

dlm_quelock Asynchronously requests a lock on a named resource

dlm_quelocktp Asynchronously requests a lock on a named resource,
using group locks and/or transaction IDs

dlm_rd_attach Attaches a process or process lock group to a recovery
domain

1–2 Distributed Lock Manager

Table 1–1: Distributed Lock Manager Functions (cont.)

Function Description

dlm_rd_collect Initiates the recovery procedure for a specified
recovery domain by collecting those locks on resources
in the domain that have invalid lock value blocks

dlm_rd_detach Detaches a process or process lock group from a
recovery domain

dlm_rd_validate Completes the recovery procedure for a specified
recovery domain by validating the resources in the
specified recovery domain collection

dlm_set_signal Specifies the signal to be used for completion and
blocking notifications

dlm_sperrno Obtains the character string associated with a given
DLM message ID and stores it in a variable

dlm_unlock Releases a lock

The DLM itself does not ensure proper access to a resource. Rather, the
processes accessing a resource agree to access the resource cooperatively,
use DLM functions when doing so, and respect the rules for using the lock
manager. These rules are as follows:

• All processes must always refer to the resource by the same name. The
name must be unique within a given namespace.

• The protections and ownership (for instance, the user IDs and group
IDs) employed within the namespace must be consistent throughout the
cluster.

• Before accessing a resource, all processes must acquire a lock on the
resource by queuing a lock request. Use the dlm_lock , dlm_locktp ,
dlm_quelock , and dlm_quelocktp functions for this purpose.

Because locks are owned by processes, applications that use the DLM must
take into account the following points:

• Because process IDs are not unique among cluster members, an
application must not use a process ID to construct process-specific
names for files or other resources managed by the DLM resources.

• Because the DLM delivers signals, completion notifications, and
blocking notifications to the process, avoid using the DLM API
functions in a threaded application.

• When a process forks, the child process does not inherit its parent’s lock
ownership or namespace attachment. Before accessing a shared
resource, the child process must attach to the namespace that includes
the resource and acquire any needed locks.

Distributed Lock Manager 1–3

• Because the DLM maintains process-specific information (such as the
process-space addresses of the blocking and completion routines), a call
to the exec routine invalidates this information and results in
unpredictable behavior. Before issuing a call to the exec routine, a
process must release its locks using the dlm_unlock and dlm_detach
functions. If the process does not call these functions, the DLM causes
the call to the exec routine to fail.

1.2 Resources

A resource can be any entity in a cluster (for example, a file, a data
structure, a raw disk device, a database, or an executable program). When
two or more processes access the same resource concurrently, they must
often synchronize their access to the resource to obtain correct results.

The lock management functions allow processes to associate a name or
binary data with a resource and synchronize access to that resource.
Without synchronization, if one process is reading the resource while
another is writing new data, the writer can quickly invalidate anything
being read by the reader.

From the viewpoint of the DLM, a resource is created when a process (or a
process on behalf of a DLM process group) first requests a lock on the
resource’s name. At that point, the DLM creates the structure that
contains, among other things, the resource’s lock queues and its lock value
block. As long as at least one process owns a lock on the resource, the
resource continues to exist. Once the last lock on the resource is dequeued,
the DLM can delete the resource. Normally, a lock is dequeued by a call to
the dlm_unlock function, but a lock (and potentially a resource as well)
can be freed abnormally if the process exits unexpectedly.

1.2.1 Resource Granularity

Many resources can be divided into smaller parts. As long as a part of a
resource can be identified by a resource name, the part can be locked.

Figure 1–1 shows a model of a database. The database is divided into
volumes, which in turn are subdivided into files. Files are further divided
into records, and the records are further divided into items.

The processes that request locks on the database shown in Figure 1–1 can
lock the whole database, a volume in the database, a file, a record, or a
single item. Locking the entire database is considered locking at a coarse
granularity; locking a single item is considered locking at a fine
granularity.

1–4 Distributed Lock Manager

Parent locks and sublocks are the mechanism by which the DLM allows
processes to achieve locking at various degrees of granularity. See
Section 1.5.5 for more information about parent locks and and sublocks.

Figure 1–1: Model Database

ZK-1099U-AI

Volume

File File

Record Record Record Record Record

Item Item Item Item Item Item Item Item Item Item Item Item

1.2.2 Namespaces

A namespace can be viewed as a container for resource names. Multiple
namespaces exist to provide separation of unrelated applications for
reasons of security and modularity.

A namespace is qualified by effective user ID or effective group ID.

Access to a namespace based on a user ID is limited to holders of that user
ID. Access to a namespace based on a group ID is limited to members of
that group.

Security is based on determining a process’s right to access the namespace,
as evidenced by its holding the effective user ID or effective group ID. As a
result, the user and group ID namespaces must be consistent across the
cluster. After access to the namespace has been granted to a process, its
individual locking operations within that namespace are unrestricted.

Cooperating processes must use the same namespace to coordinate locks for
a given resource. A process must join a namespace before attempting to
acquire a lock on a resource in that namespace. When the process calls the
dlm_nsjoin function, the DLM verifies that it is permitted to access a
namespace by verifying that the process holds the group or user ID
appropriate to that namespace. If the process passes this check, the DLM
returns a handle to the namespace. The process must present this handle

Distributed Lock Manager 1–5

on subsequent calls to DLM functions to acquire root locks (that is, the
base parent lock for a given resource in a namespace). You can add
sublocks under root locks without further namespace access checks.

A process can be a member of up to DLM_NSPROCMAXnamespaces.

1.2.3 Uniquely Identifying Resources

The DLM distinguishes resources by using the following attributes:

• A namespace (nsp) —Use the dlm_nsjoin function to obtain a
namespace handle before issuing a call to the dlm_lock , dlm_locktp ,
dlm_quelock , or dlm_quelocktp function to obtain a top-level (root)
lock in a namespace. A root lock has no parent.

• The resource name specified by the process (resnam)—The name
specified by the process represents the resource being locked. Other
processes that need to access the resource must refer to it using the
same name. The correlation between the name and the resource is a
convention agreed upon by the cooperating processes.

• The resource name length (resnlen)

• The identification of the lock’s parent (parid), if specified in a
request—If a lock request is queued that specifies a parent lock ID of
zero (0), the lock manager considers it to be a request for a root lock on
a resource. If the lock request specifies a nonzero parent lock ID, it is
considered to be a request for a sublock on the resource. In this case,
the DLM accepts the request only if the root lock has been granted.
This mechanism enables a process to lock a resource at different
degrees of granularity and build lock trees.

For example, the following two sets of attributes identify the same
resource:

Attribute nsp resnam resnlen

Resource 1 14 disk1 5

Resource 1 14 disk1 5

The following two sets of attributes also identify the same resource:

Attribute nsp resnam resnlen

Resource 1 14 disk1 5

Resource 1 14 disk12345 5

The following two sets of attributes identify different resources:

1–6 Distributed Lock Manager

Attribute nsp resnam resnlen parid

Resource 1 0 disk1 5 80

Resource 2 0 disk1 5 40

1.3 Using Locks

To use distributed lock manager (DLM) functions, a process must request
access to a resource (request a lock) using the dlm_lock , dlm_locktp ,
dlm_quelock , or dlm_quelocktp functions. The request specifies the
following parameters:

• A namespace handle obtained from a prior call to the dlm_nsjoin
function—The DLM checks a process’s right to access a namespace
before allowing it to obtain and manipulate locks on resources in that
namespace. See Section 1.2.2 for more information on namespaces.

• The resource name that represents the resource—The meaning of a
resource name is defined by the application program. The DLM uses
the resource name as a mechanism for matching lock requests issued by
multiple processes. Resource names exist within a namespace. The
same resource name in different namespaces is considered by the DLM
to be a different name.

• The length of the resource name—A resource name can be from 1 to
DLM_RESNAMELENbytes in length.

• The identification of the lock’s parent—You can specify as a parent ID
either zero (0), to request a root lock, or a nonzero parent ID to request
a sublock of that parent. See Section 1.2.2 for more information.

• The address of a location to which the DLM returns a lock ID—The
dlm_lock , dlm_locktp , dlm_quelock , and dlm_quelocktp functions
return a lock ID when the request has been accepted. The application
will then use this lock ID to refer to the lock on subsequent operations,
such as calls to the dlm_cvt , dlm_quecvt , and dlm_unlock functions.

• A lock request mode—The DLM functions compare the lock mode of the
newly requested lock to the lock modes of other locks with the same
resource name. See Section 1.3.1 for more information about lock modes.

Null mode locks (see Section 1.3.1) are compatible with all other lock modes
and are granted immediately.

New locks are granted immediately in the following instances:

• If no other process has a lock on the resource.

Distributed Lock Manager 1–7

• If another process has a lock on the resource and the mode of the new
request is compatible with the existing lock. See Section 1.3.2 for more
information about lock mode compatibility.

New locks are not granted in the following instance:

• If another process already has a lock on the resource and the mode of
the new request is not compatible with the lock mode of the existing
lock, the new request is placed in a first-in first-out (FIFO) queue,
where the lock waits until the resource’s currently granted lock mode
(resource group grant mode) becomes compatible with the lock request.

Processes can also use the dlm_cvt and dlm_quecvt functions to change
the lock mode of a lock. This is called a lock conversion. See Section 1.3.4
for additional information.

1.3.1 Lock Modes

The mode of a lock determines whether or not the resource can be shared
with other lock requests. Table 1–2 describes the six lock modes.

Table 1–2: Lock Modes

Mode Description

Null (DLM_NLMODE) Grants no access to the resource; the null mode is used
as a placeholder for future lock conversions or as a
means of preserving a resource and its context when
no other locks on it exist.

Concurrent Read
(DLM_CRMODE)

Grants read access to the resource and allows it to be
shared with other readers. The concurrent read mode
is generally used when additional locking is being
performed at a finer granularity with sublocks, or to
read data from a resource in an unprotected fashion
(allowing simultaneous writes to the resource).

Concurrent Write
(DLM_CWMODE)

Grants write access to the resource and allows it to be
shared with other writers. The concurrent write mode
is typically used to perform additional locking at a
finer granularity, or to write in an unprotected fashion.

Protected Read
(DLM_PRMODE)

Grants read access to the resource and allows it to be
shared with other readers. No writers are allowed
access to the resource. This is the traditional share
lock.

1–8 Distributed Lock Manager

Table 1–2: Lock Modes (cont.)

Mode Description

Protected Write
(DLM_PWMODE)

Grants write access to the resource and allows it to be
shared with concurrent read mode readers. No other
writers are allowed access to the resource. This is the
traditional update lock.

Exclusive (DLM_EXMODE) Grants write access to the resource and prevents it
from being shared with any other readers or writers.
This is the traditional exclusive lock.

1.3.2 Levels of Locking and Compatibility

Locks that allow the process to share a resource are called low-level locks;
locks that allow the process almost exclusive access to a resource are called
high-level locks. Null and concurrent read mode locks are considered
low-level locks; protected write and exclusive mode locks are considered
high-level locks. The lock modes from lowest to highest level access modes
are as follows:

1. Null (NL)

2. Concurrent Read (CR)

3. Concurrent Write (CW) and Protected Read (PR)

4. Protected Write (PW)

5. Exclusive (EX)

The Concurrent Write (CW) and Protected Read (PR) modes are considered
to be of equal level.

Locks that can be shared with other granted locks on a resource (that is,
the resource’s group grant mode) are said to have compatible lock modes.
Higher-level lock modes are less compatible with other lock modes than are
lower-level lock modes.

Table 1–3 shows the compatibility of the lock modes.

Table 1–3: Compatibility of Lock Modes

Mode of Requested Lock Resource Group Grant Mode

NL CR CW PR PW EX

Null (NL) Yes Yes Yes Yes Yes Yes

Concurrent Read (CR) Yes Yes Yes Yes Yes No

Distributed Lock Manager 1–9

Table 1–3: Compatibility of Lock Modes (cont.)

Mode of Requested Lock Resource Group Grant Mode

Concurrent Write (CW) Yes Yes Yes No No No

Protected Read (PR) Yes Yes No Yes No No

Protected Write (PW) Yes Yes No No No No

Exclusive (EX) Yes No No No No No

1.3.3 Lock Management Queues

A lock on a resource can be in one of the following three states:

• GRANTED—The lock request has been granted.

• CONVERTING—The lock is granted at one mode and a convert request
is waiting to be granted at a mode that is compatible with the current
resource group grant mode.

• WAITING—The new lock request is waiting to be granted.

A queue is associated with each of the three states, as shown in Figure 1–2.

Figure 1–2: Three Lock Queues

ZK-1098U-AI

Granted

Conversion

Waiting

conversions
granted

compatible
conversions

waiting locks
granted

new lock queued

new
lock
granted

incompatible
conversions

1–10 Distributed Lock Manager

When you request a new lock on an existing resource, the DLM determines
if any other locks are waiting in either the conversion or waiting queue, as
follows:

• If other locks are waiting in either queue, the new lock request is
placed at the end of the waiting queue, except if the requested lock is a
null mode lock, in which case it is granted immediately.

• If both the conversion and waiting queues are empty, the lock manager
determines if the new lock is compatible with the other granted locks. If
the lock request is compatible, the lock is granted. If the lock request is
not compatible, it is placed on the waiting queue. (You can specify the
DLM_NOQUEUEflag to the dlm_lock , dlm_locktp , dlm_quelock ,
dlm_quelocktp , dlm_cvt , or dlm_quecvt call to direct the DLM not
to queue a lock request if it cannot be granted immediately. In this case,
the lock request is granted if it is compatible with the resource’s group
grant mode, or is rejected with a DLM_NOTQUEUEDerror if it is not.)

1.3.4 Lock Conversions

Lock conversions allow processes to change the mode of locks. For
example, a process can maintain a low-level lock on a resource until it
decides to limit access to the resource by requesting a lock conversion.

You specify lock conversions by using either the dlm_cvt or the
dlm_quecvt function with the lock ID of a previously granted lock that
you wish to convert. If the requested lock mode is compatible with the
currently granted locks, the conversion request is granted immediately. If
the requested lock mode is incompatible with the existing locks in the
granted queue, the request is placed at the end of the conversion queue.
The lock retains its granted mode until the conversion request is granted.

After the DLM grants the conversion request, it grants any compatible
requests immediately following it on the conversion queue. The DLM
continues to grant requests until the conversion queue is empty or it
encounters an incompatible lock.

When the conversion queue is empty, the DLM checks the waiting queue. It
grants the first lock request on the waiting queue if it is compatible with
the locks currently granted. The DLM continues to grant requests until the
waiting queue is empty or it encounters an incompatible lock.

1.3.5 Deadlock Detection

The DLM can detect two forms of deadlock:

• Conversion deadlock—A conversion deadlock is one in which a
conversion request has a granted mode that is incompatible with the

Distributed Lock Manager 1–11

requested mode of another conversion request ahead of it in the
conversion queue. For example, in Figure 1–3, there are two granted
PR mode locks on a resource (that is, the resource grant mode is PR).
One PR mode lock tries to convert to EX mode and, as a result, must
wait in the conversion queue. Then, the second PR mode lock also tries
to convert to EX mode. It, too, must wait, behind the first lock’s request,
in the conversion queue. However, the first lock’s request will never be
granted, because its requested mode (EX) is incompatible with the
second lock’s granted mode (PR). The second lock’s request will never be
granted because it is waiting behind the first lock’s request in the
conversion queue.

Figure 1–3: Conversion Deadlock

ZK-1180U-AI

GRANTED QUEUE

CONVERSION QUEUE
waits waits

Time Line:
A

PR1 PR2 PR1 PR1 PR1

PR1-EX PR2-EXPR1-EX

B C

PR2 PR2

• Multiple resource deadlock—A multiple resource deadlock occurs when
a list of processes are each waiting for each other in a circular fashion.
For example, in Figure 1–4, three processes have queued requests for
resources that cannot be accessed until the current locks held are
dequeued (or converted to a lower lock mode). Each process is waiting
on another process to dequeue its lock request.

1–12 Distributed Lock Manager

Figure 1–4: Multiple Resource Deadlock

Waiting for
the resource
that B has

Waiting for
the resource
that C has

Waiting for
the resource
that A has

A B

C

ZK-1097U-AI

If the DLM determines that either a conversion deadlock or a multiple
resource deadlock exists, it chooses a lock to use as a victim to break the
deadlock. Although the victim is arbitrarily selected, it is guaranteed to be
either on the conversion or waiting queue (that is, it is not in the granted
queue). The DLM returns a DLM_DEADLOCKfinal completion status code to
the process that issued this dlm_lock , dlm_locktp , or dlm_cvt function
call (or provides this status in the completion_status parameter to the
completion routine specified in the call to the dlm_quelock ,
dlm_quelocktp , or dlm_quecvt function). Granted locks are never
revoked; only converting and waiting lock requests can receive the
DLM_DEADLOCKstatus code.

_______________________ Note _______________________

You must not make assumptions about which lock the DLM will
choose to break a deadlock. Also, it is possible to have
undetectable deadlocks when other services such as semaphores
or file locks are used in conjunction with the DLM. The DLM
detects only those deadlocks involving its own locks.

1.4 Dequeuing Locks

When a process no longer needs a lock on a resource, it can release the lock
by calling the dlm_unlock function.

Distributed Lock Manager 1–13

When a lock is released, the specified lock request is removed from
whatever queue it is in. Locks are dequeued from any queue: granted,
waiting, or conversion. When the last lock on a resource is dequeued, the
resource is deleted from the distributed lock manager (DLM) database.

The dlm_unlock function can write or invalidate the resource’s lock value
block if it specifies the valb parameter and the DLM_VALBflag. If the lock
to be dequeued has a granted mode of PW or EX, the contents of the
process’s value block are stored in the resource value block. If the lock
being dequeued is in any other mode, the lock value block is not used. If
the DLM_INVVALBLKflag is specified, the resource’s lock value block is
marked invalid.

The dlm_unlock function uses the following flags:

• The DLM_DEQALLflag indicates that all locks held by the process are to
be dequeued or that a subtree of locks are to be dequeued, depending on
the value of the lkid_p parameter, as shown in Table 1–4.

Table 1–4: Using the DLM_DEQALL Flag in a dlm_unlock Function Call

lkid_p DLM_DEQALL Result

≠ 0 Clear Only the lock specified by lkid_p is
released.

≠ 0 Set All sublocks of the indicated lock are
released. The lock specified by lkid_p
is not released.

= 0 Clear Returns the invalid lock ID condition
value (DLM_IVLOCKID).

= 0 Set All locks held by the process are
released.

• The DLM_INVVALBLKflag causes the DLM to invalidate the resource
lock value block of granted or converting PW or EX mode locks. The
resource lock value block remains marked as invalid until it is again
written. See Section 1.5.6 for more information about lock value blocks.

• The DLM_VALBflag causes the DLM to write the resource lock value
block for granted or converting PW or EX mode locks.

You cannot specify both the DLM_VALBand DLM_INVVALBLKflags in the
same request.

1.4.1 Canceling a Conversion Request

The dlm_cancel function cancels a lock conversion. A process can cancel a
lock conversion only if the lock request has not yet been granted, in which

1–14 Distributed Lock Manager

case the request is in the conversion queue. Cancellation causes a lock in
the conversion queue to revert to the granted lock mode it had before the
conversion request. The blkrtn and notprm values of the lock also revert
to the old values. The DLM calls any completion routine specified in the
conversion request to indicate that the request has been canceled. The
returned status is DLM_CANCELLED.

1.5 Advanced Locking Techniques

The previous sections discussed locking techniques and concepts useful to
all applications. The following sections discuss specialized features of the
distributed lock manager (DLM).

1.5.1 Asynchronous Completion of a Lock Request

The dlm_lock , dlm_locktp , and dlm_cvt functions complete when the
lock request has been granted or has failed, as indicated by the return
status value.

If an application does not want to wait for completion of the lock request, it
should use the dlm_quelock , dlm_quelocktp , and dlm_quecvt
functions. These functions return control to the calling program after the
lock request is queued. The status value returned by these functions
indicates whether the request was queued successfully or was rejected.
After a request is queued, the calling program cannot access the resource
until the request is granted.

Calls to the dlm_quelock , dlm_quelocktp , and dlm_quecvt functions
must specify the address of a completion routine. The completion routine
runs when the lock request is successful or unsuccessful. The DLM passes
to the completion routines status information that indicates the success or
failure of the lock request.

_______________________ Note _______________________

If an application wants the DLM to deliver completion
notifications, it must call the dlm_set_signal function once
before making the first lock request requiring one. Alternatively,
the application can periodically call the dlm_notify function.
The dlm_notify function enables a process to poll for pending
notifications and request their delivery, without needing to call
the dlm_set_signal function. The polling method is not
recommended.

Distributed Lock Manager 1–15

1.5.2 Notification of Synchronous Completion

The DLM provides a mechanism that allows processes to determine if a
lock request is granted synchronously; that is, if the lock is not placed on
the conversion or waiting queue. By avoiding the overhead of signal
delivery and the resulting execution of a completion routine, an application
can use this feature to improve performance in situations where most locks
are granted synchronously (as is normally the case). An application can
also use this feature to test for the absence of a conflicting lock when the
request is processed.

This feature works as follows:

• If the DLM_SYNCSTSflag is set in a call to the dlm_lock , dlm_locktp ,
dlm_cvt , dlm_quelock , dlm_quelocktp , or dlm_quecvt function,
and a lock is granted synchronously, the function returns a status value
of DLM_SYNCHto its caller. In the case of the dlm_quelock ,
dlm_quelocktp , and dlm_quecvt functions, the DLM delivers no
completion notification.

• If a lock request initiated by a dlm_quelock , dlm_quelocktp , and
dlm_quecvt function call is not completed synchronously, the function
returns a status value of DLM_SUCCESS, indicating that the request has
been queued. The DLM delivers a completion notification when the lock
is granted successfully or the lock grant fails.

1.5.3 Blocking Notifications

In some applications that use the DLM functions, a process must know if it
is preventing another process from locking a resource. The DLM informs
processes of this through the use of blocking notifications. To enable
blocking notifications, the blkrtn parameter of the lock request must
contain the address of a blocking notification routine. When the lock
prevents another lock from being granted, a blocking notification is
delivered and the blocking notification routine is executed.

The DLM provides the blocking notification routine with the following
parameters:

notprm

Context parameter of the blocking lock. This parameter was supplied by
the caller of the dlm_lock , dlm_locktp , dlm_quelock , dlm_quelocktp ,
dlm_cvt , or dlm_quecvt function in the lock request for the blocking lock.

blocked_hint

The hint parameter from the first blocked lock. This parameter was
supplied by the caller of the dlm_lock , dlm_locktp , dlm_quelock ,

1–16 Distributed Lock Manager

dlm_quelocktp , dlm_cvt , or dlm_quecvt function in the lock request for
the first blocked lock.

lkid

Pointer to the lock ID of the blocking lock.

blocked_mode

Requested mode of the first blocked lock.

By the time the notification is delivered the following conditions could still
exist:

• The lock could still be blocked.

• The blocked lock could have been released by the application; therefore,
no locks are actually blocked.

• The blocked lock could have been selected as a deadlock victim and the
request failed to break a deadlock cycle.

• The blocked lock could have been released by the application and
another lock queued that is now blocked; therefore, a completely
different lock is actually blocked.

• Other locks are backed up behind the original blocked lock or
subsequently queued blocked lock.

Because these conditions are possible, the DLM can make no guarantees
about the validity of the blocked_hint and blocked_mode parameters at
the time the blocking routine is executed.

_______________________ Note _______________________

If an application wants the DLM to deliver blocking notifications,
it must call the dlm_set_signal function once before making
the first lock request requiring a blocking notification.

Note also that if the signal specified in the dlm_set_signal
call is blocked, the blocking notification will not be delivered
until the signal is unblocked. Alternatively, the application can
periodically call the dlm_notify function. The dlm_notify
function enables a process to poll for pending notifications and
request their delivery. The polling method is not recommended.

Distributed Lock Manager 1–17

1.5.4 Lock Conversions

Lock conversions perform the following functions:

• Promoting or demoting lock modes.

• Maintaining a low-level lock and converting it to a higher-level lock
mode when necessary—A procedure normally needs an Exclusive (EX)
or Protected Write (PW) mode lock while writing data. However, the
procedure should not keep the resource exclusively locked all the time,
because writing may not always be necessary. Maintaining an EX or
PW mode lock prevents other processes from accessing the resource.
Lock conversions allow a process to request a low-level lock at first and
then convert the lock to a higher-level lock mode (PW mode, for
example) only when it needs to write data.

• Maintaining values stored in a resource lock value block—A lock value
block is a small piece of memory shared between holders of locks on the
same resource. Some applications of locks require the use of the lock
value block. If a version number or other data is maintained in the lock
value block, you need to maintain at least one lock on the resource so
that the value block is not lost. In this case, processes convert their
locks to null locks rather than dequeuing them when they have finished
accessing the resource. See Section 1.5.6 for further discussion of using
lock value blocks.

• Improving performance in some applications—To improve performance
in some applications, all resources that might be locked are locked with
Null (NL) mode locks during initialization. You can convert the NL
mode locks to higher-level locks as needed. Usually a conversion
request is faster than a new lock request, because the necessary data
structures have already been built. However, maintaining any lock for
the life of a procedure uses system dynamic memory. Therefore, the
technique of creating all necessary locks as NL mode locks and
converting them as needed improves performance at the expense of
increased memory requirements.

1.5.4.1 Queuing Lock Conversions

To perform a lock conversion, a procedure calls the dlm_cvt or dlm_quecvt
function. The lock being converted is identified by the lkid_p parameter. A
lock must be granted before it can be the object of a conversion request.

1.5.4.2 Forced Queuing of Conversions

To promote more equitable access to a given resource, you can force certain
conversion requests to be queued that would otherwise be granted. A
conversion request with the DLM_QUECVTflag set is forced to wait behind

1–18 Distributed Lock Manager

any already queued conversions. In this manner, you can specify the
DLM_QUECVTflag to give other locks a chance of being granted. However,
the conversion request is granted immediately if there are no conversions
already queued.

The DLM_QUECVTbehavior is valid only for a subset of all possible
conversions. Table 1–5 defines the set of conversion requests that are
permitted when you specify the DLM_QUECVTflag. Illegal conversion
requests fail with a return status of DLM_BADPARAM.

Table 1–5: Conversions Allowed When the DLM_QUECVT Flag Is Specified

Mode at Which Lock is
Held

Mode to Which Lock is Converted

NL CR CW PR PW EX

Null (NL) — — — — — —

Concurrent Read (CR) — — Legal Legal Legal Legal

Concurrent Write (CW) — — — Legal Legal Legal

Protected Read (PR) — — Legal — Legal Legal

Protected Write (PW) — — — — — —

Exclusive (EX) — — — — — —

1.5.5 Parent Locks

When a process calls the dlm_lock , dlm_locktp , dlm_quelock , or
dlm_quelocktp function to issue a lock request, it can declare a parent
lock for the new lock by specifying the parent ID in the parid parameter.
Locks with parents are called sublocks. A parent lock must be granted
before the sublocks belonging to the parent can be granted in the same or
some other mode.

The benefit of using parent locks and sublocks is that they allow low-level
locks (concurrent read or concurrent write) to be held at a coarse
granularity, while higher-level (protected write or exclusive mode) sublocks
are held on resources of a finer granularity. For example, a low-level lock
might control access to an entire file, while higher-level sublocks protect
individual records or data items in the file.

Assume that a number of processes need to access a database. The
database can be locked at two levels: the file and individual records. When
updating all the records in a file, locking the whole file and updating the
records without additional locking is faster and more efficient. But, when
updating selected records, locking each record as it is needed is preferable.

Distributed Lock Manager 1–19

To use parent locks in this way, all processes request locks on the file.
Processes that need to update all records must request Protected Write
(PW) or Exclusive (EX) mode locks on the file. Processes that need to
update individual records request Concurrent Write (CW) mode locks on the
file, and then use sublocks to lock the individual records in PW or EX mode.

In this way, the processes that need to access all records can do so by
locking the file, while processes that share the file can lock individual
records. A number of processes can share the file-level lock at concurrent
write mode, while their sublocks update selected records.

1.5.6 Lock Value Blocks

The lock value block is a structure of DLM_VALBLKSIZEunsigned
longwords in size that a process associates with a resource by specifying
the valb parameter and the DLM_VALBflag in calls to DLM functions.
When the lock manager creates a resource, it also creates a lock value
block for that resource. The DLM maintains the resource lock value block
until there are no more locks on the resource.

When a process specifies the DLM_VALBflag and a valid address in the
valb parameter in a new lock request and the request is granted, the
contents of the resource lock value block are copied to the process’s lock
value block from the resource lock value block.

When a process specifies the valb parameter and the DLM_VALBflag in a
conversion from PW mode or EX mode to the same or a lower mode, the
contents of the process’s lock value block are stored in the resource lock
value block.

In this manner, processes can pass (and update) the value in the lock value
block along with the ownership of a resource. Table 1–6 shows how lock
conversions affect the contents of the process’s and the resource’s lock value
block.

Table 1–6: Effect of Lock Conversion on Lock Value Block

Mode at Which Lock Is
Held

Mode to Which Lock Is Converted

NL CR CW PR PW EX

Null (NL) Read Read Read Read Read Read

Concurrent Read (CR) — Read Read Read Read Read

Concurrent Write (CW) — — Read Read Read Read

Protected Read (PR) — — — Read Read Read

1–20 Distributed Lock Manager

Table 1–6: Effect of Lock Conversion on Lock Value Block (cont.)

Mode at Which Lock Is
Held

Mode to Which Lock Is Converted

NL CR CW PR PW EX

Protected Write (PW) Write Write Write Write Write Read

Exclusive (EX) Write Write Write Write Write Write

Note that when granted PW or EX mode locks are released using the
dlm_unlock function, the address of a lock value block is specified in the
valb parameter, and the DLM_VALBflag is specified, the contents of the
process’s lock value block are written to the resource lock value block. If the
lock being released is in any other mode, the lock value block is not used.

In some situations, the resource lock value block can become invalid. When
this occurs, the DLM warns the caller of a function specifying the valb
parameter by returning the completion status of DLM_VALNOTVALID. The
following events can invalidate the resource lock value block:

• A process holding a PW or EX mode lock on a resource terminates
abnormally.

• A node participating in locking fails and a process on that node was
holding (or might have been holding) a PW or EX mode lock on the
resource.

• A process holding a PW or EX mode lock on the resource calls the
dlm_unlock function to dequeue this lock and specifies the flag
DLM_INVVALBLKin the flags parameter.

1.6 Local Buffer Caching Using DLM Functions

Applications can use the distributed lock manager (DLM) to perform local
buffer caching (also called distributed buffer management). Local
buffer caching allows a number of processes to maintain copies of data (for
example, disk blocks) in buffers local to each process, and to be notified
when the buffers contain invalid data due to modifications by another
process. In applications where modifications are infrequent, you may save
substantial I/O by maintaining local copies of buffers—hence, the names
local buffer caching or distributed buffer management. Either the lock
value block or blocking notifications (or both) can be used to perform buffer
caching.

Distributed Lock Manager 1–21

1.6.1 Using the Lock Value Block

To support local buffer caching using the lock value block, each process
maintaining a cache of buffers maintains a Null (NL) mode lock on a
resource that represents the current contents of each buffer. (For this
discussion, assume that the buffers contain disk blocks.) The lock value
block associated with each resource is used to contain a disk block version
number. The first time a lock is obtained on a particular disk block, the
application returns the current version number of that disk block in the
lock value block of the process.

If the contents of the buffer are cached, this version number is saved along
with the buffer. To reuse the contents of the buffer, the NL mode lock must
be converted to Protected Read (PR) mode or Exclusive (EX) mode,
depending on whether the buffer is to be read or written. This conversion
returns the latest version number of the disk block. The application
compares the version number of the disk block with the saved version
number. If they are equal, the cached copy is valid. If they are not equal,
the application must read a fresh copy of the disk block from disk.

Whenever a procedure modifies a buffer, it writes the modified buffer to
disk and then increments the version number before converting the
corresponding lock to NL mode. In this way, the next process that attempts
to use its local copy of the same buffer will find a version number mismatch
and must read the latest copy from disk, rather than use its cached (now
invalid) buffer.

1.6.2 Using Blocking Notifications

Blocking notifications are used to notify processes with granted locks that
another process with an incompatible lock mode has been queued to access
the same resource.

You may use blocking notifications to support local buffer caching in two
ways. One technique involves deferred buffer writes; the other technique is
an alternate method of local buffer caching without using lock value blocks.

1.6.2.1 Deferring Buffer Writes

When local buffer caching is being performed, a modified buffer must be
written to disk before the EX mode lock can be released. If a large number
of modifications are expected (particularly over a short period of time), you
can reduce disk I/O by maintaining the EX mode lock for the entire time
that the modifications are being made, and writing the buffer once.

However, this prevents other processes from using the same disk block
during this interval. This can be avoided if the process holding the EX

1–22 Distributed Lock Manager

mode lock has a blocking notification. The notification will notify the
process if another process needs to use the same disk block. The holder of
the EX mode lock can then write the buffer to disk and convert its lock to
NL mode (which allows the other process to access the disk block).
However, if no other process needs the same disk block, the first process
can modify it many times, but write it only once.

_______________________ Note _______________________

After a blocking notification is delivered to a process, the process
must convert the lock to receive any subsequent blocking
notifications.

1.6.2.2 Buffer Caching

To perform local buffer caching using blocking notifications, processes do
not convert their locks to NL mode from PR or EX mode when finished with
the buffer. Instead, they receive blocking notifications whenever another
process attempts to lock the same resource in an incompatible lock mode.
With this technique, processes are notified that their cached buffers are
invalid as soon as a writer needs the buffer, rather than the next time the
process tries to use the buffer.

1.6.3 Choosing a Buffer Caching Technique

The choice between using version numbers or blocking notifications to
perform local buffer caching depends on the characteristics of the
application. An application that uses version numbers performs more lock
conversions, while one that uses blocking notifications delivers more
notifications. Note that these techniques are compatible; some processes
can use one technique at the same time that other processes use the other.
Generally speaking, blocking notifications are preferred in a low-contention
environment, while version numbers are preferred in a high-contention
environment. You may even invent combined or adaptive strategies.

In a combined strategy, the applications use specific techniques. If a
process is expected to reuse the contents of a buffer in a short amount of
time, blocking notifications are used; if there is no reason to expect a quick
reuse, version numbers are used.

In an adaptive strategy, an application makes evaluations on the rate of
blocking notifications and conversions. If blocking notifications arrive
frequently, the application changes to using version numbers; if many
conversions take place and the same cached copy remains valid, the
application changes to using blocking notifications.

Distributed Lock Manager 1–23

For example, consider the case where one process continually displays the
state of a database, while another occasionally updates it. If version
numbers are used, the displaying process must always check to see that its
copy of the database is valid (by performing a lock conversion); if blocking
notifications are used, the displaying process is informed every time the
database is updated. However, if updates occur frequently, using version
numbers is preferable to continually delivering blocking notifications.

1.7 Distributed Lock Manager Functions Code Example

The following programs show the basic mechanisms an application uses to
join a namespace and establish an initial lock on a resource in that
namespace. They also demonstrate such key distributed lock manager
(DLM) concepts such as lock conversion, the use of lock value blocks, and
the use of blocking notification routines.

The api_ex_master.c and api_ex_client.c programs, listed in
Example 1–1 and available from the /usr/examples/cluster directory,
can execute in parallel on the same cluster member or on different cluster
members. You must run both programs from accounts with the same user
ID (UID) and you must start the api_ex_master.c program first. They
display output similar to the following:

% api_ex_master &
api_ex_master: grab a EX mode lock
api_ex_master: value block read
api_ex_master: expected empty value block got <>
api_ex_master: start client and wait for the blocking notification to

continue
% api_ex_client &

api_ex_client: grab a NL mode lock
api_ex_client: value block read
api_ex_client: expected empty value block got <>
api_ex_client: converting to NL->EX to get the value block.
api_ex_client: should see blocking routine run on master

*** api_ex_master: blk_and_go hold the lock for a couple of seconds
*** api_ex_master: blk_and_go sleeping
*** api_ex_master: blk_and_go sleeping

*** api_ex_master: blk_and_go setting done
api_ex_master: now convert (EX !EX) to write the value block <abc>
*** api_ex_master: blkrtn: down convert to NL
api_ex_master: waiting for blocking notification

api_ex_client: value block read
api_ex_master: trying to get the lock back as PR to read value block

api_ex_client: expected <abc> got <abc>
*** api_ex_client: blkrtn: dequeue EX lock to write value block <>
*** api_ex_client: hold the lock for a couple of seconds
*** api_ex_client: sleeping
*** api_ex_client: sleeping
*** api_ex_client: sleeping
api_ex_client: sleeping waiting for blocking notification

api_ex_master: value block read
api_ex_client: done

1–24 Distributed Lock Manager

api_ex_master: expected <efg> got <efg>
api_ex_master done

Example 1–1: Locking, Lock Value Blocks, and Lock Conversion

/***
* *
* api_ex_master.c *
* *
***/

/* cc -g -o api_ex_master api_ex_master.c -ldlm */

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <signal.h>

#include <sys/dlm.h>

char *resnam = "dist shared resource";
char *prog;
int done = 0;

#ifdef DLM_DEBUG
int dlm_debug = 2;
#define Cprintf if(dlm_debug)printf
#define Dprintf if(dlm_debug >= 2)printf
#else /* DLM_DEBUG */
#define Cprintf ;
#define Dprintf ;
#endif /* DLM_DEBUG */

void
error(dlm_lkid_t *lk, dlm_status_t stat)
{

printf("%s: lock error %s on lkid 0x%lx\n",
prog, dlm_sperrno(stat), lk);

abort();
}
void
blk_and_go(callback_arg_t x, callback_arg_t y, dlm_lkid_t *lk,

dlm_lkmode_t blkmode)
{

int i;

printf("*** %s: blk_and_go hold the lock for a couple of seconds\n",
prog);

for (i = 0; i < 3; i++) {
printf("*** %s: blk_and_go sleeping\n", prog);
sleep(1);

}
printf("*** %s: blk_and_go setting done\n", prog);
/* done waiting */
done = 1; 13

}
void
blkrtn(callback_arg_t x, callback_arg_t y, dlm_lkid_t *lk,

dlm_lkmode_t blkmode)
{

dlm_status_t stat;

Cprintf("*** %s: blkrtn: x 0x%lx y 0x%lx lkid 0x%lx blkmode %d\n",
prog, x, y, *lk, blkmode);

printf("*** %s: blkrtn: down convert to NL\n", prog);
if ((stat = dlm_cvt(lk, DLM_NLMODE, 0, 0, 0, 0, 0, 0))

!= DLM_SUCCESS)
error(lk, stat); 16

/* let waiters know we’re done */

Distributed Lock Manager 1–25

Example 1–1: Locking, Lock Value Blocks, and Lock Conversion (cont.)

done = 1;
}
main(int argc, char *argv[])
{

int resnlen, i;
dlm_lkid_t lkid;
dlm_status_t stat;
dlm_valb_t vb;
dlm_nsp_t nsp;

/* this program must be run first */

/* first we need to join a namespace */
if ((stat = dlm_nsjoin(getuid(), &nsp, DLM_USER))

!= DLM_SUCCESS) { 1
printf("%s: can’t join namespace\n", argv[0]);
error(0, stat);

}

prog = argv[0];

/* now let DLM know what signal to use for blocking routines */
dlm_set_signal(SIGIO, &i); 2
Cprintf("%s: dlm_set_signal: i %d\n", prog, i);

resnlen = strlen(resnam); 3

/* get EX mode lock and establish blocking notif routine */
Cprintf("%s: grab a EX mode lock\n", prog);
stat = dlm_lock(nsp, (uchar_t *)resnam, resnlen, 0, &lkid,

DLM_EXMODE, &vb, (DLM_VALB | DLM_SYNCSTS), 0, 0,
blk_and_go, 0); 4

/*
* since we’re the only one running it
* had better be granted DLM_SYNCH status
*/

if(stat != DLM_SYNCH) {
printf("%s: dlm_lock failed\n", prog);
error(&lkid, stat); 5

}
/* newly-created value block should be empty */
printf("%s: value block read\n", prog);
printf("%s: expected empty value block got <%s>\n", prog,

vb.valblk);
if (strlen(vb.valblk)) {

printf("%s: lock: value block not empty\n", prog);
error(&lkid, stat); 6

}
printf("%s: start client and wait for the blocking

notification to continue\n",
prog);

while (!done)
sleep(1); 7

done = 0;
/* put a known string into the value block */
(void) strcat(vb.valblk, "abc"); 14
printf("%s: now convert (EX !EX) to write the value block <%s>\n",

prog, vb.valblk);
/* use a new blocking routine */
stat = dlm_cvt(&lkid, DLM_EXMODE, &vb, (DLM_VALB | DLM_SYNCSTS),

0, 0, blkrtn, 0); 15
/*

* since we own (EX) the resource the
* convert had better be granted SYNC
*/

if(stat != DLM_SYNCH) {
printf("%s: convert failed\n", prog);
error(&lkid, stat);

}

1–26 Distributed Lock Manager

Example 1–1: Locking, Lock Value Blocks, and Lock Conversion (cont.)

printf("%s: waiting for blocking notification\n", prog);
while (!done)

sleep(1);
printf("%s: trying to get the lock back as PR to read value block\n",

prog);
stat = dlm_cvt(&lkid, DLM_PRMODE, &vb, DLM_VALB, 0, 0, 0, 0); 19
if (stat != DLM_SUCCESS) {

printf("%s: error on conversion lock\n", prog);
error(&lkid, stat);

}
printf("%s: value block read\n", prog);
printf("%s: expected <efg> got <%s>\n", prog, vb.valblk);
/* compare to the other known string */
if (strcmp(vb.valblk, "efg")) {

printf("%s: main: value block mismatch <%s>\n",
prog, vb.valblk);

error(&lkid, stat); 23
}
printf("%s done\n", prog); 24
exit(0);

}
/***

* *
* api_ex_client.c *
* *
***/

/* cc -g -o api_ex_client api_ex_client.c -ldlm */

#include <assert.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <signal.h>

#include <sys/dlm.h>

char *resnam = "dist shared resource";
char *prog;
int done = 0;

#ifdef DLM_DEBUG
int dlm_debug = 2;
#define Cprintf if(dlm_debug)printf
#define Dprintf if(dlm_debug >= 2)printf
#else /* DLM_DEBUG */
#define Cprintf ;
#define Dprintf ;
#endif /* DLM_DEBUG */

void
error(dlm_lkid_t *lk, dlm_status_t stat)
{

printf("\t%s: lock error %s on lkid 0x%lx\n",
prog, dlm_sperrno(stat), *lk);

abort();
}

/*
* blocking routine that will release the lock and in doing so will
* write the resource value block.
*/

void
blkrtn(callback_arg_t x, callback_arg_t y, dlm_lkid_t *lk,

dlm_lkmode_t blkmode)
{

dlm_status_t stat;
dlm_valb_t vb;
int i;

Distributed Lock Manager 1–27

Example 1–1: Locking, Lock Value Blocks, and Lock Conversion (cont.)

Cprintf("*** %s: blkrtn: x 0x%lx y 0x%lx lkid 0x%lx blkmode %d\n",
prog, x, y, *lk, blkmode);

printf("\t*** %s: blkrtn: dequeue EX lock to write
value block <%s>\n", prog, vb.valblk);

printf("\t*** %s: hold the lock for a couple of seconds\n",
prog);

for (i = 0; i < 3; i++) {
printf("\t*** %s: sleeping\n", prog);
sleep(1);

}
/* make sure its clean */
bzero(vb.valblk, DLM_VALBLKSIZE);
/* write something different */
(void) strcat(vb.valblk, "efg"); 20
if((stat = dlm_unlock(lk, &vb, DLM_VALB)) != DLM_SUCCESS)

error(lk, stat); 21
/* let waiters know we’re done */
done = 1;

}
main(int argc, char *argv[])
{

int resnlen, i;
dlm_lkid_t lkid;
dlm_status_t stat;
dlm_nsp_t nsp;
dlm_valb_t vb;

/* first we need to join a namespace */
if ((stat = dlm_nsjoin(getuid(), &nsp, DLM_USER)) != DLM_SUCCESS) {

printf("\t%s: can’t join namespace\n", argv[0]);
error(0, stat); 8

}

prog = argv[0];

/* now let DLM know what signal to use for blocking routines */
dlm_set_signal(SIGIO, &i);
Cprintf("\t%s: dlm_set_signal: i %d\n", prog, i); 9

resnlen = strlen(resnam);
Cprintf("\t%s: resnam %s\n", prog, resnam);

printf("\t%s: grab a NL mode lock\n", prog);
stat = dlm_lock(nsp, (uchar_t *)resnam, resnlen, 0, &lkid,

DLM_NLMODE, &vb, (DLM_VALB | DLM_SYNCSTS),
0, 0, 0, 0);

/* NL mode better be granted SYNC status */
if(stat != DLM_SYNCH) {

printf("\t%s: dlm_lock failed\n", prog);
error(&lkid, stat); 10

}
/* should be nulls since master hasn’t written anything yet */
printf("\t%s: value block read\n", prog);
printf("\t%s: expected empty value block got <%s>\n", prog, vb.valblk);
if (strlen(vb.valblk)) {

printf("\t%s: value block not empty\n", prog);
error(&lkid, stat); 11

}

done = 0;
printf("\t%s: converting to NL->EX to get the value block.\n", prog);
printf("\t%s: should see blocking routine run on master\n", prog);
stat = dlm_cvt(&lkid, DLM_EXMODE, &vb, DLM_VALB, 0, 0,

blkrtn, 0); 12
if(stat != DLM_SUCCESS) {

printf("\t%s: dlm_cvt failed\n", prog);
error(&lkid, stat);

}
/* should have read what master wrote, "abc" */
printf("\t%s: value block read\n", prog);
printf("\t%s: expected <abc> got <%s>\n", prog, vb.valblk);

1–28 Distributed Lock Manager

Example 1–1: Locking, Lock Value Blocks, and Lock Conversion (cont.)

if (strcmp(vb.valblk, "abc")) {
printf("\t%s: main: value block mismatch <%s>\n",
prog, vb.valblk);
error(&lkid, stat); 17

}
/* now wait for blocking from master */
printf("\t%s: sleeping waiting for blocking notification\n", prog);
while (!done)

sleep(1); 18
printf("\t%s: done\n", prog); 22
exit(0);

}

1 The api_ex_master.c program calls the dlm_nsjoin function to join
the namespace of the resource on which it will request a lock. This
namespace is the current process’s UID, as obtained from the getuid
system call. It is a namespace that allows access from processes
holding the effective UID of the resource owner, as indicated by the
DLM_USERparameter. If successful, the function returns a namespace
handle to the location indicated by the nsp parameter.

2 The api_ex_master.c program calls the dlm_set_signal function
to specify that the DLM is to use the SIGIO signal to send completion
and blocking notifications to this process.

3 The api_ex_master.c program obtains the length of the resource
name to be supplied in the subsequent call to the dlm_lock function
call. The name of the resource is "dist shared resource".

4 The api_ex_master.c program calls the dlm_lock function to obtain
an exclusive mode (DLM_EXMODE) lock on the "dist shared resource"
resource in the uid namespace. The namespace handle, resource name,
and resource name length are all supplied as required parameters.

The DLM_SYNCSTSflag indicates that the DLM should return
DLM_SYNCHstatus if the lock request is granted immediately. If the
function call is successful, the DLM returns the lock ID of the Exclusive
mode (EX) lock to the location specified by the lkid parameter.

This function call also specifies the DLM_VALBflag and a location to
and from which the contents of the lock value block for the resource
are written or read. The DLM copies the resource’s lock value to this
location when the lock requested by the dlm_lock function call is
granted. Finally, the function call specifies the blocking notification
routine blk_and_go . The DLM will call this routine after the lock has
been granted and is blocking another lock request.

5 The api_ex_master.c program checks the status value returned
from the dlm_lock function call. If the status value is not DLM_SYNCH
status (the successful condition value requested by the DLM_SYNCSTS

Distributed Lock Manager 1–29

flag in the dlm_lock function call), the lock request has had to wait
for the lock to be granted. Because no other programs interested in
this lock are currently running, this should not be the case.

6 The api_ex_master.c program checks that the contents of the value
block the DLM has written to the location specified by the vb
parameter are empty.

7 The api_ex_master.c program waits for you to start the
api_ex_client.c program. It will resume when its exclusive mode
(DLM_EXMODE) lock on the "dist shared resource" receives blocking
notification that it is blocking a lock request on the same resource from
the api_ex_client.c program.

8 After you start it, the api_ex_client program calls the dlm_nsjoin
function to join the uid namespace: that is, the same namespace that
the process running the api_ex_master.c program previously joined.

9 The api_ex_client.c program, like the api_ex_master.c
program, calls the dlm_set_signal function to specify that the DLM
is to use the SIGIO signal to send completion and blocking
notifications to this process.

10 The api_ex_client.c program calls the dlm_lock function to obtain
a null mode (DLM_NLMODE) lock on the same resource on which the
process running the api_ex_master.c already holds an exclusive
mode lock. The DLM_SYNCSTSflag indicates that the DLM should
return DLM_SYNCHstatus if the lock request is granted immediately.
This lock request should be granted immediately, because the Null
mode (NL) lock is compatible with the previously granted exclusive
mode lock. This function call also specifies the DLM_VALBflag and a
pointer to a lock value block. The DLM copies the resource’s lock value
to this location when the lock requested by the dlm_lock function call
is granted.

11 The api_ex_client.c program checks the contents of the value block
the DLM has written to the location specified by the vb parameter.
The value block should be empty because the api_ex_master.c
program has not yet written to it.

12 The api_ex_client.c program calls the dlm_cvt function to convert
its null mode lock on the resource to exclusive mode. It specifies a
blocking notification routine named blkrtn . Because the process
running the api_ex_master.c program already holds an exclusive
lock on this resource, it is blocking the api_ex_client.c program’s
lock conversion request. However, because the exclusive mode lock
taken out by the api_ex_master.c program specifies a blocking
notification routine, the DLM uses the SIGIO signal to send the
process running the api_ex_master.c program a blocking
notification, triggering its blocking notification routine (blk_and_go).

1–30 Distributed Lock Manager

13 The blk_and_go routine sleeps for three seconds and then sets the
done flag, which causes the api_ex_master.c program to resume.

14 The api_ex_master.c program writes the string abc to its local copy
of the resource’s value block.

15 The api_ex_master.c program calls the dlm_cvt function to write
to the lock value block. To do so, it "converts" its exclusive mode lock
on the resource to exclusive mode (DLM_EXMODE), specifying the lock
ID, the location of its copy of the value block, and the DLM_VALBflag
as parameters to the function call. The DLM_SYNCSTSflag indicates
that the DLM should return DLM_SYNCHstatus if the lock request is
granted immediately. This lock conversion request should be granted
immediately because the process already holds an exclusive mode lock
on the resource.

The dlm_cvt function call also specifies the blkrtn routine as a
blocking notification routine. The DLM will call this blocking
notification routine immediately because this exclusive mode lock on
the resource blocks the lock conversion request from the
api_ex_client.c program.

16 The api_ex_master.c program’s blkrtn routine runs and
immediately tries to downgrade its lock on the resource from exclusive
mode to null mode by calling the dlm_cvt function. This call should
succeed immediately.

17 As soon as this conversion takes place, the api_ex_client.c
program’s lock conversion request succeeds. (The null mode lock held
by the process running the api_ex_master.c program is compatible
with the exclusive mode lock now held by the process running the
api_ex_client.c program.) In upgrading the null mode lock to
exclusive mode, the DLM copies the resource lock value block to the
process running the api_ex_client.c program. At this point, the
api_ex_client.c program should see the abc text string that the
api_ex_master.c program wrote previously to the resource’s lock
value block.

18 The api_ex_client.c program goes to sleep waiting for a blocking
notification.

19 The api_ex_master.c program, which has been sleeping since it
downgraded its lock on the "dist shared resource" resource, calls the
dlm_cvt function to convert its null mode lock on the resource to
protected read (DLM_PRMODE) mode. Because the process running the
api_ex_client.c program already holds an exclusive lock on this
resource, it is blocking the api_ex_master.c program’s lock
conversion request. (That is, the exclusive mode and protected read
locks are incompatible.) However, because the exclusive mode lock
taken out by the api_ex_client.c program specifies a blocking

Distributed Lock Manager 1–31

notification routine, the DLM delivers it a blocking notification by
sending it a SIGIO signal, triggering its blocking notification routine
(blkrtn).

20 The blkrtn blocking notification routine in the api_ex_client.c
program sleeps for a few seconds and writes the text string efg to its
local copy of the resource’s value block.

21 The blkrtn routine calls the dlm_unlock function to release its lock
on the resource. In specifying the address of its local copy of the
resource’s lock value block and the DLM_VALBflag, it requests the
DLM to write the local copy of the value block to the resource when its
lock granted mode is protected write (DLM_PWMODE) or exclusive
(DLM_EXMODE). The granted mode here is DLM_EXMODEso the local copy
of the value block will be written to the resource’s lock value block.

22 The api_ex_client.c program completes and exits.

23 As soon as the process running the api_ex_client.c program
releases its lock on the resource, the api_ex_master.c program’s
lock conversion request succeeds. In upgrading the null mode lock to
protected read mode, the DLM copies the resource lock value block to
the process running the api_ex_master.c program. At this point, the
api_ex_master.c program should see the efg text string that the
api_ex_client.c program wrote previously to the resource’s lock
value block.

24 The api_ex_master.c program completes and exits.

1–32 Distributed Lock Manager

2
Cluster Information Services

This chapter describes how to use the TruCluster Production Server
information services to obtain information about cluster members and
services. It includes the following:

• An overview of the TruCluster Production Server information services
(Section 2.1).

• Examples that show how to use the TruCluster Production Server
information services (Section 2.2).

2.1 Overview

The TruCluster Production Server information services exist primarily to
provide an infrastructure for the cluster monitoring and administration
utilities (such as cnxshow and drd_ivp) provided with the Production
Server product. Other applications can use them as well.

Table 2–1 lists the functions provided by the TruCluster Production Server
information services. These functions are available in the libcnx library
for applications.

Table 2–1: Cluster Information Services

Function Description

clu_get_ase_drdsvcs_byname Obtains the distributed raw disk (DRD)
services list from the specified cluster
node

clu_get_ase_enabled Determines whether or not availability
software is enabled on a specified cluster
node

clu_get_ase_id_byname Obtains the ASE_ID of the specified
cluster node

clu_get_ase_nodes_byname Obtains the available server
environment (ASE) member list from
the specified cluster node

clu_get_aseinfo_byname Obtains ASE-specific information from
the specified cluster member system

Cluster Information Services 2–1

Table 2–1: Cluster Information Services (cont.)

Function Description

clu_get_cluster Obtains a description of a cluster and its
member nodes

clu_get_cluster_net Obtains the name of the cluster
interconnect interface on the local node

clu_get_cnxdirector Obtains the name of the node that is
running the connection manager director
daemon (cnxmgrd)

clu_get_nodebyname Obtains information about a named
cluster node

clu_get_nodebycsid Obtains information about the cluster
node identified by the specified cluster
ID (CSID)

clu_get_qdisk Obtains information about each
tie-breaker disk configured in the cluster

2.2 Using the TruCluster Production Server Information
Services

The following examples show the use of the TruCluster Production Server
information services.

The cluinfo.c program, listed in Example 2–1 and available from the
/usr/examples/cluster directory, calls the clu_get_cluster and
clu_get_qdisk functions to obtain information about the cluster
configuration and the names and status of the member systems. It displays
output similar to the following:

% cluinfo

Cluster summary

The director is : canarymc
suspended : no

Virtual hub is present
disks defined : 1
disks required: 1
Disks names:

/dev/rrz9a

2–2 Cluster Information Services

The members are:

cluster node name : canarymc
host name : canary.sun.ra.com
node state is : clu_mem_member
incarnation : ccaf0
cluster system id : 0001,0001

cluster node name : cheatmc
host name : cheat.sun.ra.com
node state is : clu_mem_member
incarnation : d1730
cluster system id : 0001,0002

Example 2–1: Using the clu_get_cluster and clu_get_qdisk Functions

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <sys/cluster_defs.h>

/* cluinfo.c
*
* A simple program to collect information about the cluster.
*
*/

/* Makefile
* cluinfo : cluinfo.c
* cc -o cluinfo cluinfo.c -lcnx
* chmod 555 cluinfo
* clean :
* -rm cluinfo
*/

/* Translate a Boolean value to yes or no */
#define xlate_bool(c)((c)? str_yes : str_no)
char str_yes[] = "yes";
char str_no[] = "no";

/* Buffers to receive the requested data */
clu_node_t nodebuf[MAX_CLUSTER_NODES];
clu_cluster_t clubuf;
clu_qdisk_t dbuf;

/* Format membership state into a readable string. */
char *
xlate_mbr_state(clu_mem_state_t m)
{
#define NUM_MBR_STATES 5

static char *unkn = "unknown_state";
static char *mbr[NUM_MBR_STATES] = {

"clu_mem_invalid",
"clu_mem_unknown",
"clu_mem_new",
"clu_mem_member",
"clu_mem_removed",

};
if (m > NUM_MBR_STATES - 1)

return unkn;
else

Cluster Information Services 2–3

Example 2–1: Using the clu_get_cluster and clu_get_qdisk Functions (cont.)

return mbr[m];
}

main(int arc, char **argv)
{

int clustatus, dskstatus;

/* Collect information about the cluster and its nodes */
clustatus = clu_get_cluster(&clubuf, nodebuf, MAX_CLUSTER_NODES);

/* Collect information about tie-breaker disks */
dskstatus = clu_get_qdisk(&dbuf);

if (clustatus == CLU_SUCCESS)
{

int i;
clu_node_t *p, *e;

/* Display the cluster summary */
(void) printf("---\n");
(void) printf(" Cluster summary\n");
(void) printf("---\n\n");
(void) printf("The director is : %s\n", clubuf.curr_direct_name);
(void) printf(" suspended : %s\n\n", xlate_bool(clubuf.suspended));

/* Display disk information */
if (dskstatus == CLU_SUCCESS)
{

/* Display disk information if there is a virtual hub present */

if (dbuf.have_vhub)
{

(void) printf("Virtual hub is present\n");
(void) printf(" disks defined : %d\n",

dbuf.num_qdisk_entries);
(void) printf(" disks required: %d\n",

dbuf.num_qdisk_access_rqd);
(void) printf(" Disks names:\n");
for (i = 0; i < MAX_QDSKS; i++)
{

if (dbuf.qdisk_vec[i].qdisk_name[0] != ’ ’)
(void) printf(" %s\n", dbuf.qdisk_vec[i].qdisk_name);

}
}
else
{

(void) printf("Virtual hub is not present.\n");
(void) printf(" Tie-breaker disks are not required.\n");

}

/* Display the membership list */
(void) printf("\nThe members are:\n\n");
for (p = nodebuf, e = &nodebuf[MAX_CLUSTER_NODES]; p < e; p++)
{

if (p->clu_node_name[0] != ’ ’)
{

/* Information about a single node */
(void) printf(" cluster node name : %s\n",

p->clu_node_name);
(void) printf(" host name : %s\n",

p->clu_hostname);
(void) printf(" node state is : %s\n",

xlate_mbr_state(p->clu_node_state));
(void) printf(" incarnation : %lx\n",

p->clu_node_incarnation);
(void) printf(" cluster system id : %04x,%04x\n",

CLU_CSID_SEQN(p->clu_node_csid),
CLU_CSID_IDX(p->clu_node_csid));

(void) printf("\n\n");
}

}

2–4 Cluster Information Services

Example 2–1: Using the clu_get_cluster and clu_get_qdisk Functions (cont.)

}
}
return 0;

}

The cludo.c program, listed in Example 2–2 and available from the
/usr/examples/cluster directory, calls the clu_get_cluster ,
clu_get_nodebyname , clu_get_ase_enabled ,
clu_get_ase_id_byname , and clu_get_ase_nodes_byname functions
to obtain information about individual cluster member systems. It displays
output similar to the following:

% cludo
Contacting mcclu17 to collect the following

cluster node name : mcclu17
host name : clu17.sun.ra.com
ase enabled : no
ase information not available

Contacting mcclu5 to collect the following
cluster node name : mcclu5
host name : clu5.sun.ra.com
ase enabled : yes
ase id : 5
ase nodes : mcclu5 mcclu8

Contacting mcclu8 to collect the following
cluster node name : mcclu8
host name : clu8.sun.ra.com
ase enabled : yes
ase id : 5
ase nodes : mcclu5 mcclu8

Example 2–2: Obtaining Information from Cluster Member Systems

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <sys/cluster_defs.h>

/*
* cludo.c
*

Cluster Information Services 2–5

Example 2–2: Obtaining Information from Cluster Member Systems (cont.)

* Determine membership and collect information from each node.
*
*/

/*
* cc -o cludo cludo.c -lcnx
*/

/* Translate a Boolean value to yes or no */
#define xlate_bool(c)((c)? str_yes : str_no)
char str_yes[] = "yes";
char str_no[] = "no";

/* Buffers to receive the requested data */
clu_node_t nodebuf[MAX_CLUSTER_NODES];
clu_cluster_t clubuf;

main(int arc, char **argv)
{

int clustatus;
clu_node_t *p, *e;

/*
* Collect information about the cluster and its nodes. This list will
* be used to communicate with each member node.
*/

clustatus = clu_get_cluster(&clubuf, nodebuf, MAX_CLUSTER_NODES);
if (clustatus != CLU_SUCCESS) {

printf("Error obtaining cluster information\n");
exit(1);

}
/*

* Contact each member node and request more information.
*/

p = nodebuf; /* mark the start */
e = &nodebuf[MAX_CLUSTER_NODES]; /* mark the end */
for (; p < e; p++) {

if (p->clu_node_name[0] != ’ ’) {
clu_node_t info;
int status;
int ase;

(void) printf("Contacting %s to collect the following\n",
p->clu_node_name);

status = clu_get_nodebyname(p->clu_node_name, &info);
ase = clu_get_ase_enabled(p->clu_node_name);

if (status != CLU_SUCCESS)

(void) printf("error contacting that node\n");
else {

/* Information about a single node */

(void) printf(" cluster node name : %s\n",
info.clu_node_name);

(void) printf(" host name : %s\n",
info.clu_hostname);

2–6 Cluster Information Services

Example 2–2: Obtaining Information from Cluster Member Systems (cont.)

(void) printf(" ase enabled : %s\n", xlate_bool(ase));

/* If ASE is enabled, collect additional information */
if (ase) {

char buf[CLU_MAX_GETINFO_BUF_SIZE];

/* Collect the domain id */
status = clu_get_ase_id_byname(

info.clu_hostname, buf, CLU_MAX_GETINFO_BUF_SIZE);
if (status == CLU_SUCCESS)

printf(" ase id : %s", buf);

/* Collect the identity of nodes in the ase */
status = clu_get_ase_nodes_byname(

info.clu_hostname, buf, CLU_MAX_GETINFO_BUF_SIZE);
if (status == CLU_SUCCESS)

printf(" ase nodes : %s", buf);
} else

(void) printf(" ase information not available\n");
}

(void) printf("\n\n");
}

}
return 0;

}

Cluster Information Services 2–7

Index

A
ASE

determining if enabled, 2–1
obtaining information about

members, 2–1
obtaining member list, 2–1

ASE_ID
obtaining, 2–1

B
blocking notification routine, 1–16

choosing a buffer technique, 1–23
using in local buffer caching, 1–22

C
clu_get_ase_drdsvcs_byname

function, 2–1
clu_get_ase_enabled function, 2–1
clu_get_ase_id_byname function,

2–1
clu_get_ase_nodes_byname

function, 2–1
clu_get_aseinfo_byname function,

2–1
clu_get_cluster function, 2–1
clu_get_cluster_net function, 2–2
clu_get_cnxdirector function, 2–2
clu_get_nodebycsid function, 2–2
clu_get_nodebyname function, 2–2
clu_get_qdisk function, 2–2
cluster

obtaining a description of, 2–2
obtaining information about a

member system, 2–2
cluster information services, 2–1

examples, 2–2
cluster interconnect

obtaining the name of, 2–2
concurrent read lock, 1–8
concurrent write lock, 1–8
connection manager director

daemon
determining which member is

running, 2–2
converting queue, 1–10

D
deadlock detection

by distributed lock manager, 1–11
distributed lock manager, 1–1

deadlock detection, 1–11
functions, 1–2
programming interfaces, 1–1
resource, 1–4
rules for using, 1–3

distributed lock manager locks
conversion of, 1–8
converting, 1–11, 1–18
dequeuing, 1–13
general usage of, 1–7
lock mode, 1–8
lock queues, 1–10
lock request mode, 1–7
overview, 1–1
parent, 1–6
ranking, 1–9
releasing, 1–13
unlocking, 1–13
when granted, 1–7

distributed raw disk services list
obtaining, 2–1

dlm_cancel function, 1–14

Index–1

dlm_cvt function, 1–8, 1–11, 1–18
dlm_detach function, 1–4
dlm_lock function, 1–7
dlm_locktp function, 1–7
dlm_notify function, 1–15n, 1–17n
dlm_nsjoin function, 1–5, 1–6, 1–7
dlm_quecvt function, 1–8, 1–11,

1–15, 1–18
dlm_quelock function, 1–7, 1–15
dlm_quelocktp function, 1–7, 1–8,

1–15
dlm_set_signal function, 1–15n,

1–17n
dlm_unlock function, 1–4, 1–13,

1–21

E
exclusive lock, 1–8

G
granted queue, 1–10
granularity

resource, 1–4

H
high-level lock, 1–9

L
libdlm system library, 1–2
lock completion routine, 1–15
lock conversion, 1–18

canceling, 1–14
definition, 1–8

lock conversion deadlock, 1–11
lock mode

compatibility table, 1–9
definition, 1–8
summary, 1–8

lock queue, 1–10
lock request

asynchronous completion of, 1–15
synchronous completion of, 1–16

lock request mode, 1–7
lock states, 1–10
lock value block

definition, 1–18
effect of conversion on, 1–20
effect of dlm_unlock on, 1–21
invalidation of, 1–21
using, 1–20
using for local buffer caching,

1–22
low-level lock, 1–9

M
multiple resource deadlock, 1–12

N
namespace

definition, 1–5
null mode lock, 1–8

P
parent lock, 1–6, 1–19
protected read lock, 1–8
protected write lock, 1–8

R
resource

as defined by distributed lock
manager, 1–4

granularity, 1–4
namespace, 1–5
naming, 1–6

resource group grant mode, 1–8

S
sublock, 1–19

Index–2

T
tie-breaker disk

obtaining information about, 2–2

W
waiting queue, 1–10

Index–3

How to Order Additional Documentation

Technical Support

If you need help deciding which documentation best meets your needs, call 800-DIGITAL (800-344-4825)
before placing your electronic, telephone, or direct mail order.

Electronic Orders

To place an order at the Electronic Store, dial 800-234-1998 using a modem from anywhere in the USA,
Canada, or Puerto Rico. If you need assistance using the Electronic Store, call 800-DIGITAL
(800-344-4825).

Telephone and Direct Mail Orders

Your Location Call Contact

Continental USA,
Alaska, or Hawaii

800-DIGITAL Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Puerto Rico 809-754-7575 Local Digital subsidiary

Canada 800-267-6215 Digital Equipment of Canada
Attn: DECdirect Operations KAO2/2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

International — Local Digital subsidiary or approved distributor

Internal
(submit an
Internal Software
Order Form,
EN-01740-07)

— SSB Order Processing – NQO/V19
or
U.S. Software Supply Business
Digital Equipment Corporation
10 Cotton Road
Nashua, NH 03063-1260

Reader’s Comments

TruCluster Production Server Software
Application Programming Interfaces
AA-QL8PC-TE

Digital welcomes your comments and suggestions on this manual. Your input will help us to write
documentation that meets your needs. Please send your suggestions using one of the following methods:

• This postage-paid form

• Internet electronic mail: readers_comment@zk3.dec.com

• Fax: (603) 884-0120, Attn: UBPG Publications, ZKO3-3/Y32

If you are not using this form, please be sure you include the name of the document, the page number,
and the product name and version.

Please rate this manual:
Excellent Good Fair Poor

Accuracy (software works as manual says) � � � �

Clarity (easy to understand) � � � �

Organization (structure of subject matter) � � � �

Figures (useful) � � � �

Examples (useful) � � � �

Index (ability to find topic) � � � �

Usability (ability to access information quickly) � � � �

Please list errors you have found in this manual:

Page Description
_________ ___
_________ ___
_________ ___
_________ ___

Additional comments or suggestions to improve this manual:

What version of the software described by this manual are you using? ______________________

Name, title, department __
Mailing address __
Electronic mail ___
Telephone __
Date ___

UEG PUBLICATIONS MANAGER

BUSINESS REPLY MAIL

 Do Not Cut or Tear − Fold Here

 Do Not Cut or Tear − Fold Here and Tape

NO POSTAGE
NECESSARY IF
MAILED IN THE
UNITED STATES

FIRST−CLASS MAIL PERMIT NO. 33 MAYNARD MA

POSTAGE WILL BE PAID BY ADDRESSEE

ZKO3−3/Y32
110 SPIT BROOK RD

TM

DIGITAL EQUIPMENT CORPORATION

NASHUA NH 03062−9987

Cut on
Dotted

Line

