

INTERNATIONALIZATION

Information pertaining to the C++ Standard Library has been edited
and incorporated into DIGITAL C++ documentation with permission
of Rogue Wave Software, Inc. All rights reserved.

Copyright 1994-1997 Rogue Wave Software, Inc.

Table of Contents

1. Internationalization ..3
1.1 How to Read this Section... 3
1.2 Internationalization and Localization.. 3

1.2.1 Localizing Cultural Conventions ... 4
1.2.2 Character Encodings for Localizing Alphabets 8
1.2.3 Summary .. 15

1.3 The Standard C Locale and the Standard C++ Locales 15
1.3.1 The C Locale ... 16
1.3.2 The C++ Locales ... 18
1.3.3 Facets ... 19
1.3.4 Differences between the C Locale and the C++ Locales ... 20
1.3.5 Relationship between the C Locale and the C++ Locale .. 26

1.4 The Locale .. 26
1.5 The Facets... 28

1.5.1 Creating a Facet Object.. 28
1.5.2 Accessing a Locale’s Facets.. 30
1.5.3 Using a Stream’s Facet.. 31
1.5.4 Creating a Facet Class for Replacement in a Locale 34
1.5.5 The Facet Id .. 37
1.5.6 Creating a Facet Class for Addition to a Locale................ 38

1.6 User-Defined Facets: An Example.. 40
1.6.1 A Phone Number Class... 40
1.6.2 A Phone Number Formatting Facet Class......................... 41
1.6.3 An Inserter for Phone Numbers ... 42
1.6.4 The Phone Number Facet Class Revisited 42
1.6.5 An Example of a Concrete Facet Class............................. 46
1.6.6 Using Phone Number Facets... 46
1.6.7 Formatting Phone Numbers .. 47
1.6.8 Improving the Inserter Function.. 48

S e c t i o n 1.
Internationalization

1.1 How to Read this Section
This section of the User's Guide deals with locales in the Standard
C++ Library. Since the focus here is on concepts rather than details,
you will want to consult the Class Reference for more complete
information.

We begin the section with an introduction to internationalization in
general. It is intended to explain why and how locales are useful for
the benefit of readers with no experience in this area. Eventually it
will include a reference for the standard facets, but not in this first
version of the User's Guide. Hence, the section may look a bit
unbalanced for the time being.

Following the introduction, we describe the facilities in C that are
currently available for internationalizing software. Users with a
background in C will want to understand how the C locale differs
from the C++ locale. Some developers may even need to know how
the two locales interact.

For their benefit, we then contrast the concept of the C++ locale with
the C locale. We learn what a C++ locale is, what facets are, how
locales are created and composed, and how facets are used,
replaced, and defined. The standard facets are only briefly
described here, but details are available in the Class Reference.

For the advanced user, we conclude the internationalization section
with a rather complex example of a user-defined facet, which
demonstrates how facets can be built and used in conjunction with
iostreams.

1.2 Internationalization and Localization
Computer users all over the world prefer to interact with their systems
using their own local languages and cultural conventions. As a
developer aiming for high international acceptance of your
products, you need to provide users the flexibility for modifying

4 Internationalization Rogue Wave Standard C++ Library

output conventions to comply with local requirements, such as
different currency and numeric representations. You must also
provide the capability for translating interfaces and messages
without necessitating many different language versions of your
software.

Two processes that enhance software for worldwide use are
internationalization and localization. Internationalization is the
process of building into software the potential for worldwide use. It is
the result of efforts by programmers and software designers during
software development.

Internationalization requires that developers consciously design and
implement software for adaptation to various languages and
cultural conventions, and avoid hard-coding elements that can be
localized, like screen positions and file names. For example,
developers should never embed in their code any messages,
prompts, or other kind of displayed text, but rather store the
messages externally, so they can be translated and exchanged. A
developer of internationalized software should never assume specific
conventions for formatting numeric or monetary values or for
displaying date and time.

Localization is the process of actually adapting internationalized
software to the needs of users in a particular geographical or cultural
area. It includes translation of messages by software translators. It
requires the creation and availability of appropriate tables
containing relevant local data for use in a given system. This
typically is the function of system administrators, who build facilities
for these functions into their operating systems. Users of
internationalized software are involved in the process of localization
in that they select the local conventions they prefer.

The Standard C++ Library offers a number of classes that support
internationalization of your programs. We will describe them in
detail in this chapter. Before we do, however, we would like to
define some of the cultural conventions that impact software
internationalization, and are supported by the programming
languages C and C++ and their respective standard libraries. Of
course, there are many issues outside our list that need to be
addressed, like orientation, sizing and positioning of screen displays,
vertical writing and printing, selection of font tables, handling
international keyboards, and so on. But let us begin here.

1.2.1 Localizing Cultural Conventions

The need for localizing software arises from differences in cultural
conventions. These differences involve: language itself;

Rogue Wave Standard C++ Library Internationalization 5

representation of numbers and currency; display of time and date;
and ordering or sorting of characters and strings.

1.2.1.1 Language

Of course, language itself varies from country to country, and even
within a country. Your program may require output messages in
English, Dutch, French, Italian or any number of languages
commonly used in the world today.

Languages may also differ in the alphabet they use. Examples of
different languages with their respective alphabets are given below:

American
English:

a-z A-Z and punctuation

German: a-z A-Z and punctuation and äöü
ÄÖÜ ß

Greek: α−ω· Α−Ω and punctuation

1.2.1.2 Numbers

The representation of numbers depends on local customs, which
vary from country to country. For example, consider the radix
character, the symbol used to separate the integer portion of a
number from the fractional portion. In American English, this
character is a period; in much of Europe, it is a comma. Conversely,
the thousands separator that separates numbers larger than three
digits is a comma in American English, and a period in much of
Europe.

The convention for grouping digits also varies. In American English,
digits are grouped by threes, but there are many other possibilities.
In the example below, the same number is written as it would be
locally in three different countries:

1,000,000.55 US

1.000.000,55 Germany

10,00,000.55 Nepal

1.2.1.3 Currency

We are all aware that countries use different currencies. However,
not everyone realizes the many different ways we can represent
units of currency. For example, the symbol for a currency can vary.
Here are two different ways of representing the same amount in US
dollars:

6 Internationalization Rogue Wave Standard C++ Library

$24.99 US

USD 24.99 International currency symbol for the
US

The placement of the currency symbol varies for different currencies,
too, appearing before, after, or even within the numeric value:

¥ 155 Japan

13,50 DM Germany

£14 19s. 6d. England before
decimalization

The format of negative currency values differs:

öS 1,1 -öS 1,1 Austria

1,1 DM -1,1 DM Germany

SFr. 1.1 SFr.-1.1 Switzerland

HK$1.1 (HK$1.1) Hong Kong

1.2.1.4 Time and Date

Local conventions also determine how time and date are displayed.
Some countries use a 24-hour clock; others use a 12-hour clock.
Names and abbreviations for days of the week and months of the
year vary by language.

Customs dictate the ordering of the year, month, and day, as well as
the separating delimiters for their numeric representation. To
designate years, some regions use seasonal, astronomical, or
historical criteria, instead of the Western Gregorian calendar system.
For example, the official Japanese calendar is based on the year of
reign of the current Emperor.

The following example shows short and long representations of the
same date in different countries:

10/29/96 Tuesday, October 29,
1996

US

1996. 10. 29. 1996. október 29. Hungary

29/10/96 martedì 29 ottobre 1996 Italy

29/10/1996 Τριτη, 29 Οκτωβριου 1996 Greece

29.10.96 Dienstag, 29. Oktober
1996

Germany

Rogue Wave Standard C++ Library Internationalization 7

The following example shows different representations of the same
time:

4:55 pm US time

16:55 Uhr German time

And the following example shows different representations of the
same time:

11:45:15 Digital representation, US

11:45:15
µµ

Digital representation,
Greece

1.2.1.5 Ordering

Languages may vary regarding collating sequence; that is, their
rules for ordering or sorting characters or strings. The following
example shows the same list of words ordered alphabetically by
different collating sequences:

Sorted by 1ASCII rules Sorted by German
rules

Airplane Airplane

Zebra ähnlich

bird bird

car car

ähnlich Zebra

The ASCII collation orders elements according to the numeric value
of bytes, which does not meet the requirements of English language
dictionary sorting. This is because lexicographical order sorts a after
A and before B, whereas ASCII-based order sorts a after the entire set
of uppercase letters.

The German alphabet sorts ä before b, whereas the ASCII order sorts
an umlaut after all other letters.

In addition to specifying the ordering of individual characters, some
languages specify that certain groups of characters should be

1 ASCII stands for American Standard Code for Information

Interchange. A 7-bit code is used in the US.

8 Internationalization Rogue Wave Standard C++ Library

clustered and treated as a single character. The following example
shows the difference this can make in an ordering:

Sorted by ASCII rules Sorted by Spanish
rules

chaleco cuna

cuna chaleco

día día

llava loro

loro llava

maíz maíz

The word llava is sorted after loro and before maíz , because in
Spanish ll is a digraph2, i.e., it is treated as a single character that is
sorted after l and before m. Similarly, the digraph ch in Spanish is
treated as a single character to be sorted after c, but before d. Two
characters that are paired and treated as a single character are
referred to as a two-to-one character code pair.

In other cases, one character is treated as if it were actually two
characters. The German single character ß, called the sharp s, is
treated as ss . This treatment makes a difference in the ordering, as
shown in the example below:

Sorted by ASCII rules Sorted by German
rules

Rosselenker Rosselenker

Rostbratwurst Roßhaar

Roßhaar Rostbratwurst

1.2.2 Character Encodings for Localizing Alphabets

We know that different languages can have different alphabets.
The first step in localizing an alphabet is to find a way to represent,

2 Generally, a digraph is a combination of characters that is

written separately, but forms a single lexical unit.

Rogue Wave Standard C++ Library Internationalization 9

or encode, all its characters. In general, alphabets may have
different character encodings.

The 7-bit ASCII codeset is the traditional code on UNIX systems.

The 8-bit codesets permit the processing of many Eastern and
Western European, Middle Eastern, and Asian Languages. Some
are strictly extensions of the 7-bit ASCII codeset; these include the 7-
bit ASCII codes and additionally support 128-character codes
beyond those of ASCII. Such extensions meet the needs of Western
European users. To support languages that have completely
different alphabets, such as Arabic and Greek, larger 8-bit codesets
have been designed.

Multibyte character codes are required for alphabets of more than
256 characters, such as kanji, which consists of Japanese
ideographs based on Chinese characters. Kanji has tens of
thousands of characters, each of which is represented by two bytes.
To ensure backward compatibility with ASCII, a multibyte codeset is
a superset of the ASCII codeset and consists of a mixture of one- and
two-byte characters.

For such languages, several encoding schemes have been defined.
These encoding schemes provide a set of rules for parsing a byte
stream into a group of coded characters.

1.2.2.1 Multibyte Encodings

Handling multibyte character encodings is a challenging task. It
involves parsing multibyte character sequences, and in many cases
requires conversions between multibyte characters and wide
characters.

Understanding multibyte encoding schemes is easier when
explained by means of a typical example. One of the earliest and
probably biggest markets for multibyte character support is in
Japan. Therefore, the following examples are based on encoding
schemes for Japanese text processing.

In Japan, a single text message can be composed of characters
from four different writing systems. Kanji has tens of thousands of
characters, which are represented by pictures. Hiragana and
katakana are syllabaries, each containing about 80 sounds, which
are also represented as ideographs. The Roman characters include
some 95 letters, digits, and punctuation marks.

Here is an example of an encoded Japanese sentence composed of
these four writing systems:

10 Internationalization Rogue Wave Standard C++ Library

Figure 1. A Japanese sentence mixing four writing systems

The sentence means: “Encoding methods such as JIS can support
texts that mix Japanese and English.”

A number of Japanese character sets are common:

JIS C 6226-
1978

JIS X 0208-1983

JIS X 0208-
1990

JIS X 0212-1990

JIS-ROMAN ASCII

There is no universally recognized multibyte encoding scheme for
Japanese. Instead, we deal with the three common multibyte
encoding schemes defined below:

JIS (Japanese Industrial Standard)

Shift-JIS

EUC (Extended UNIX Code)

1.2.2.1.1 JIS Encoding

The JIS, or Japanese Industrial Standard, supports a number of
standard Japanese character sets, some requiring one byte, others
two. Escape sequences are required to shift between one- and two-
byte modes.

Escape sequences, also referred to as shift sequences, are sequences
of control characters. Control characters do not belong to any of the
alphabets. They are artificial characters that do not have a visual
representation. However, they are part of the encoding scheme,
where they serve as separators between different character sets, and
indicate a switch in the way a character sequence is interpreted.
The use of the shift sequence is demonstrated in the following figure.

Rogue Wave Standard C++ Library Internationalization 11

For encoding schemes containing shift sequences, like JIS, it is
necessary to maintain a shift state while parsing a character
sequence. In the example above, we are in some initial shift state at
the start of the sequence. Here it is ASCII. Therefore, characters are
assumed to be one-byte ASCII codes until the shift sequence <ESC>$B

is seen. This switches us to two-byte mode, as defined by JIS X 0208-
1983. The shift sequence <ESC>(B then switches us back to ASCII
mode.

Encoding schemes that use shift state are not very efficient for
internal storage or processing. Sometimes shift sequences require up
to six bytes. Frequent switching between character sets in a file of
strings could cause the number of bytes used in shift sequences to
exceed the number of bytes used to represent the actual data!

Encodings containing shift sequences are used primarily as an
external code, which allows information interchange between a
program and the outside world.

1.2.2.1.2 Shift-JIS Encoding

Despite its name, Shift-JIS has nothing to do with shift sequences and
states. In this encoding scheme, each byte is inspected to see if it is
a one-byte character or the first byte of a two-byte character. This is
determined by reserving a set of byte values for certain purposes.
For example:

1. Any byte having a value in the range 0x21-7E is assumed to be
a one-byte ASCII/JIS Roman character.

2. Any byte having a value in the range 0xA1-DF is assumed to be
a one-byte half-width katakana character.

3. Any byte having a value in the range 0x81-9F or 0xE0-EF is
assumed to be the first byte of a two-byte character from the set
JIS X 0208-1990. The second byte must have a value in the
range 0x40-7E or 0x80-FC.

In Japan <ESC>$B

JIS X 0208-1983
two-byte characters

ASCII
one-byte characters

<ESC>(B means “kana & kanji”.

shift to Kanji shift to ASCII

Figure 2. An example of a Japanese text encoded in JIS

12 Internationalization Rogue Wave Standard C++ Library

While this encoding is more compact than JIS, it cannot represent as
many characters as JIS. In fact, Shift-JIS cannot represent any
characters in the supplemental character set JIS X 0212-1990, which
contains more than 6,000 characters.

1.2.2.1.3 EUC Encoding

EUC is not peculiar to Japanese encoding. It was developed as a
method for handling multiple character sets, Japanese or otherwise,
within a single text stream.

The EUC encoding is much more extensible than Shift-JIS since it
allows for characters containing more than two bytes. The encoding
scheme used for Japanese characters is as follows:

1. Any byte having a value in the range 0x21-7E is assumed to be
a one-byte ASCII/JIS Roman character.

2. Any byte having a value in the range 0xA1-FE is assumed to be
the first byte of a two-byte character from the set JIS X0208-1990.
The second byte must also have a value in that range.

3. Any byte having a value in the range 0x8E is assumed to be
followed by a second byte with a value in the range 0xA1-DF,
which represents a half-width katakana character.

4. Any byte having the value 0x8F is assumed to be followed by
two more bytes with values in the range 0xA1-FE, which together
represent a character from the set JIS X0212-1990.

The last two cases involve a prefix byte with values 0x8E and 0x8F,
respectively. These bytes are somewhat like shift sequences in that
they introduce a change in subsequent byte interpretation.
However, unlike the shift sequences in JIS, which introduce a
sequence, these prefix bytes must precede every multibyte
character, not just the first in a sequence. For this reason, each
multibyte character encoded in this manner stands alone and EUC is
not considered to involve shift states.

1.2.2.1.4 Uses of the Three Multibyte Encodings

The three multibyte encodings just described are typically used in
separate areas:

• JIS is the primary encoding method used for electronic
transmission such as e-mail because it uses only 7 bits of each
byte. This is required because some network paths strip the
eighth bit from characters. Escape sequences are used to switch
between one- and two-byte modes, as well as between different
character sets.

Rogue Wave Standard C++ Library Internationalization 13

• Shift-JIS was invented by Microsoft and is used on MS-DOS-based
machines. Each byte is inspected to see if it is a one-byte
character or the first byte of a two-byte character. Shift-JIS does
not support as many characters as JIS and EUC do.

• EUC encoding is implemented as the internal code for most
UNIX-based platforms. It allows for characters containing more
than two bytes, and is much more extensible that Shift-JIS. EUC
is a general method for handling multiple character sets. It is not
peculiar to Japanese encoding.

1.2.2.2 Wide Characters

Multibyte encoding provides an efficient way to move characters
around outside programs, and between programs and the outside
world. Once inside a program, however, it is easier and more
efficient to deal with characters that have the same size and format.
We call these wide characters.

An example will illustrate how wide characters make text
processing inside a program easier. Consider a filename string
containing a directory path where adjacent names are separated
by a slashfor example, /CC/include/locale.h . To find the actual
filename in a single-byte character string, we can start at the back
of the string. When we find the first separator, we know where the
filename starts. If the string contains multibyte characters, we must
scan from the front so we don’t inspect bytes out of context. If the
string contains wide characters, however, we can treat it like a
single-byte character and scan from the back.

Conceptually, you can think of wide character sets as being
extended ASCII or EBCDIC3; each unique character is assigned a
distinct value. Since they are used as the counterpart to a multibyte
encoding, wide character sets must allow representation of all
characters that can be represented in a multibyte encoding as wide
characters. As multibyte encodings support thousands of
characters, wide characters are usually larger that one byte—
typically two or four bytes. All characters in a wide character set
are of equal size. The size of a wide character is not universally
fixed, although this depends on the particular wide character set.

There are a number of wide character standards, including those
shown below:

3 EBCDIC stands for "extended binary coded decimal

interchange code. It is a single-byte character set
developed by IBM.

14 Internationalization Rogue Wave Standard C++ Library

ISO 10646.UCS-24 16-bit
characters

ISO 10646.UCS-4 32-bit
characters

Unicode5 16-bit
characters

The programming language C++ supports wide characters; their
native type in C++ is called wchar_t . The syntax for wide character
constants and wide character strings is similar to that for ordinary,
tiny character constants and strings:

L’a’ is a wide character constant,
and

L”abc” is a wide character string.

1.2.2.3 Conversion between Multibytes and Wide Characters

Since wide characters are usually used for internal representation of
characters in a program, and multibyte encodings are used for
external representation, converting multibytes to wide characters is
a common task during input/output operations. Input to and output
from files is a typical example. The file will usually contain
multibyte characters. When you read such a file, you convert these
multibyte characters into wide characters that you store in an
internal wide character buffer for further processing. When you
write to a multibyte file, you have to convert the wide characters
held internally into multibytes for storage on a external file. The
following figure demonstrates graphically how this conversion
during file input is done:

4 ISO 10646 is the encoding of the International Standards

Organization.
5 Unicode was developed by the Unicode Consortium. It is

code-for-code equivalent to the 16-bit ISO 10646
encoding.

Rogue Wave Standard C++ Library Internationalization 15

Figure 3. Conversion from a multibyte to a wide character encoding

The conversion from a multibyte sequence into a wide character
sequence requires expansion of one-byte characters into two- or four-
byte wide characters. Escape sequences are eliminated. Multibytes
that consist of two or more bytes are translated into their wide
character equivalents.

1.2.3 Summary

In this section, we discussed a variety of issues involved in
developing software for worldwide use. For all of these areas in
which cultural conventions differ from one region to another, the
Standard C++ Library provides services that enable you to easily
internationalize your C++ programs. These services include:

• Formatting and parsing of numbers, currency unit, dates, and
time;

• Handling different alphabets, their character classification, and
collation sequences;

• Converting codesets, including multibyte to wide character
conversion;

• Handling messages in different languages.

1.3 The Standard C Locale and the Standard C++
Locales
As a software developer, you may already have some background
in the C programming language, and the internationalization
services provided by the C library. You may even be facing the

external file

J a p a n

internal buffer

p a n

<ESC> $ B

JIS

Unicode

16 Internationalization Rogue Wave Standard C++ Library

problem of integrating internationalized software written in C with
software in C++. If so, we recommend that you study this section.
Here we give a short recap of the internationalization services
provided by the C library, and its relationship to C++ locales. We
then describe the C++ locales in terms of the C locale.

1.3.1 The C Locale

All the culture and language dependencies discussed in the
previous section need to be represented in an operating system. This
information is usually represented in a kind of language table,
called a locale.

The X/Open consortium has standardized a variety of services for
Native Language Support (NLS) in the programming language C.
This standard is commonly known as XPG4. The X/Open’s Native
Language Support includes internationalization services as well as
localization support. 6 The description below is based on this
standard.

According to XPG4, the C locale is composed of several categories:

Table 1. Categories of the C locale

Category Content

LC_NUMERIC Rules and symbols for numbers

LC_TIME Values for date and time information

LC_MONETARY Rules and symbols for monetary
information

LC_CTYPE Character classification and case
conversion

LC_COLLATE Collation sequence

LC_MESSAGE Formats and values of messages

6 ISO C also defines internationalization services in the

programming language C. The respective ISO
standard is ISO/IEC 9899 and its Amendment 1. The
ISO C standard is identical to the POSIX standard for
the programming language C. The
internationalization services defined by ISO C are
part of XPG4. However, XPG4 offers more services
than ISO C, such as localization support.

Rogue Wave Standard C++ Library Internationalization 17

The external representation of a C locale is usually as a file in UNIX.
Other operating systems may choose other representations. The
external representation is transformed into an internal memory
representation by calling the function setlocale() , as shown in the
figure below:

Figure 4. Transformation of a C locale from external to internal
representation

Inside a program, the C locale is represented by one or more global
data structures. The C library provides a set of functions that use
information from those global data structures to adapt their behavior
to local conventions. Examples of these functions and the
information they cover are listed below:

Table 2. C locale functions and the information they cover

C locale function Information covered

setlocale(), ... Locale initialization and
language information

isalpha() , isupper() , isdigit() ,
...

Character classification

strftime() , ... Date and time functions

strfmon() Monetary functions

printf() , scanf() , ... Number parsing and
formatting

strcoll() , wcscoll() , ... String collation

& /LEUDU\

6HUYLFHV

scanf()
printf()
mbtowc()
isdigit()

stftime()
...

...

decimal_point
thousand_separator
currency_symbol
negative_sign
...

...

struct lconv

LC_NUMERIC

LC_MONETARY

LC_TIME

.

H[WHUQDO
UHSUHVHQDWLRQ
RI D ORFDOH

VHWORFDOH � �

18 Internationalization Rogue Wave Standard C++ Library

mblen() , mbtowc() , wctomb() , ... Multibyte functions

cat_open() , catgets() ,
cat_close()

Message retrieval

1.3.2 The C++ Locales

In C++, a locale is a class called locale provided by the Standard
C++ Library. The C++ class locale differs from the C locale because
it is more than a language table, or data representation of the
various culture and language dependencies. It also includes the
internationalization services, which in C are global functions.

In C++, internationalization semantics are broken out into separate
classes called facets. Each facet handles a set of internationalization
services, for example, the formatting of monetary values. Facets
may also represent a set of culture and language dependencies,
such as the rules and symbols for monetary information.

Each locale object maintains a set of facet objects. Basically, you
can think of a C++ locale as a container of facets. This concept is
illustrated graphically in the figure below:

Figure 5. A C++ locale is a container of facets

/RFDOH/RFDOH

&�� /LEUDU\

WLPHBJHW�!WLPHBJHW�!

WLPHBSXW�!WLPHBSXW�!

FRGHFYW�!FRGHFYW�!

get_time ()

get_date ()

...

put()

...

convert()

...

Rogue Wave Standard C++ Library Internationalization 19

1.3.3 Facets

Facet classes encapsulate data that represents a set of culture and
language dependencies, and offer a set of related
internationalization services. Facet classes are very flexible. They
can contain just about any internationalization service you can
invent. The Standard C++ Library offers a number of predefined
standard facets, which provide services similar to those contained in
the C library. However, you are free to bundle additional
internationalization services into a new facet class, or purchase a
library of facets.

1.3.3.1 The Standard Facets

As listed in Table 1, the C locale is composed of six categories of
locale-dependent information: LC_NUMERIC (rules and symbols for
numbers), LC_TIME (values for date and time information),
LC_MONETARY (rules and symbols for monetary information), LC_CTYPE

(character classification and conversion), LC_COLLATE (collation
sequence), and LC_MESSAGE (formats and values of messages).

Similarly, there are six groups of standard facet classes. A detailed
description of these facets is contained in the Class Reference, but a
brief overview is given below. Note that an abbreviation like
num_get <charT,InputIterator> means that num_get is a class
template taking two template arguments, a character type, and an
input iterator type. The groups of the standard facets are:

• Numeric. The facet classes num_get<charT,InputIterator> and
num_put<charT, OutputIterator> handle numeric formatting and
parsing. The facet classes provide get() and put() member
functions for values of type long , double , etc.

 The facet class numpunct<charT> specifies numeric punctuation. It
provides functions like decimal_point() , thousands_sep() , etc.

• Monetary. The facet classes
money_get<charT,bool,InputIterator> and money_put<charT,

bool, OutputIterator> handle formatting and parsing of
monetary values. They provide get() and put() member
functions that parse or produce a sequence of digits, representing
a count of the smallest unit of the currency. For example, the
sequence $1,056.23 in a common US locale would yield 105623
units, or the character sequence “105623”.

 The facet class moneypunct <charT, bool International> handles
monetary punctuation like the facet numpunct<charT> handles
numeric punctuation. It comes with functions like curr_symbol() ,
etc.

20 Internationalization Rogue Wave Standard C++ Library

• Time. The facet classes time_get<charT,InputIterator> and
time_put<charT, OutputIterator> handle date and time
formatting and parsing. They provide functions like get_time() ,
get_date() , get_weekday() ,etc.

• Ctype. The facet class ctype<charT> encapsulates the Standard
C++ Library ctype features for character classification, like
tolower() , toupper() , isspace() , isprint() , etc.

• Collate. The facet class collate<charT> provides features for
string collation, including a compare() function used for string
comparison.

• Code Conversion. The facet class codecvt<fromT,toT,stateT> is
used when converting from one encoding scheme to another,
such as from the multibyte encoding JIS to the wide-character
encoding Unicode. Instances of this facet are typically used in
pairs. The main member function is convert() . There are
template specializations <char, wchar_t, mbstate_t> and
<wchar_t, char, mbstate_t> for multibyte to wide character
conversions.

• Messages. The facet class messages<charT> implements the
X/Open message retrieval. It provides facilities to access
message catalogues via open() and close(catalog) , and to
retrieve messages via get(..., int msgid,...) .

The names of the standard facets obey certain naming rules. The
get facet classes, like num_get and time_get , handle parsing. The put

facet classes handle formatting. The punct facet classes, like
numpunct and moneypunct , represent rules and symbols.

1.3.4 Differences between the C Locale and the C++ Locales

As we have seen so far, the C locale and the C++ locale offer similar
services. However, the semantics of the C++ locale are different from
the semantics of the C locale:

• The Standard C locale is a global resource: there is only one
locale for the entire application. This makes it hard to build an
application that has to handle several locales at a time.

• The Standard C++ locale is a class. Numerous instances of class
locale can be created at will, so you can have as many locale
objects as you need.

To explore this difference in further detail, let us see how locales are
typically used.

Rogue Wave Standard C++ Library Internationalization 21

1.3.4.1 Common Uses of the C locale

The C locale is commonly used as a default locale, a native locale,
or in multiple locale applications.

Default locale. As a developer, you may never require
internationalization features, and thus never set a locale. If you can
safely assume that users of your applications are accommodated by
the classic US English ASCII behavior, you have no need for
localization. Without even knowing it, you will always use the
default locale, which is the US English ASCII locale.

Native locale. If you do plan on localizing your program, the
appropriate strategy may be to retrieve the native locale once at the
beginning of your program, and never, ever change this setting
again. This way your application will adapt itself to one particular
locale, and use this throughout its entire run time. Users of such
applications can explicitly set their favorite locale before starting the
application. Usually the system’s default settings will automatically
activate the native locale.

Multiple locales. It may well happen that you do have to work with
multiple locales. For example, if you have to implement an
application for Switzerland, you might want to output messages in
Italian, French, and German. As the C locale is a global data
structure, you will have to switch locales several times.

Let's look at an example of an application that works with multiple
locales. Imagine an application that prints invoices to be sent to
customers all over the world. Of course, the invoices need to be
printed in the customer’s native language, so the application has to
write output in multiple languages. Prices to be included in the
invoice are taken from a single price list. If we assume the
application is used by a US company, the price list will be in US
English.

The application reads input (the product price list) in US English, and
writes output (the invoice) in the customer’s native language, say
German. Since there is only one global locale in C that affects both
input and output, the global locale must change between input and
output operations. Before a price is read from the English price list,
the locale must be switched from the German locale used for
printing the invoice to a US English locale. Before inserting the price
into the invoice, the global locale must be switched back to the
German locale. To read the next input from the price list, the locale
must be switched back to English, and so forth. This activity is
summarized in the following figure:

22 Internationalization Rogue Wave Standard C++ Library

Figure 6. Multiple locales in C

Here is the C code that corresponds to the previous example7:

double price;
char buf[SZ];
while (…) // processing the German invoice
{ setlocale(LC_ALL, “En_US”);
 fscanf(priceFile,”%fl”,&price);
 // convert $ to DM according to the current exchange rate
 setlocale(LC_ALL,”De_DE”);
 fprintf(invoiceFile,”%f”,price);
}

Using C++ locale objects dramatically simplifies the task of
communicating between multiple locales. The iostreams in the

Standard C++ Library are internationalized so that streams can be
imbued with separate locale objects. For example, the input stream
can be imbued with an English locale object, and the output stream
can be imbued with a German locale object. In this way, switching
locales becomes unnecessary, as demonstrated in the figure below:

7 The example is oversimplified. One would certainly use

the strfmon() function for formatting monetary
values like prices. We will consider more realistic
examples in section 1.5.

the global local e

price list

� � � � �

invoi ce

' 0 � �

� � � � �

� � ' 0

US English

German

� � �

� �

� � � � ��

Rogue Wave Standard C++ Library Internationalization 23

Figure 7. Multiple locales in C++

Here is the C++ code corresponding to the previous example:

priceFile.imbue(locale(“En_US”));
invoiceFile.imbue(locale(“De_DE”);
double price;
while (…) // processing the German invoice
{ priceFile >> price;
 // convert $ to DM according to the current exchange rate
 invoiceFile << price;
}

Because the examples given above are brief, switching locales
might look like a minor inconvenience. However, it is a major
problem once code conversions are involved.

To underscore the point, let us revisit the JIS encoding scheme using
the shift sequence described in Figure 2, and repeated below. With
these encodings, you will recall that you must maintain a shift state
while parsing a character sequence, as shown in Figure 8:

German locale

price list

� � � � �

invoi ce

' 0 � �

� � � � �

� � ' 0� � �

� �

� � � � ��

Engl ish local e

In Japan <ESC>$B

JIS X 0208-1983
two-byte characters

ASCII
one-byte characters

<ESC>(B means “kana & kanji”.

shift to Kanji shift to ASCII

24 Internationalization Rogue Wave Standard C++ Library

Figure 8. The Japanese text encoded in JIS from Figure 2

Suppose you are parsing input from a multibyte file that contains
text that is encoded in JIS, as shown in the next figure. While you
parse this file, you have to keep track of the current shift state so you
know how to interpret the characters you read, and how to
transform them into the appropriate internal wide character
representation.

Figure 9. Parsing input from a multibyte file using the global C
locale

The global C locale can be switched during parsing; for example,
from a locale object specifying the input to be in JIS encoding, to a
locale object using EUC encoding instead. The current shift state
becomes invalid each time the locale is switched, and you have to
carefully maintain the shift state in an application that switches
locales.

As long as the locale switches are intentional, this problem can
presumably be solved. However, in multithreaded environments,
the global C locale may impose a severe problem, as it can be
switched inadvertently by another otherwise unrelated thread of
execution. For this reason, internationalizing a C program for a
multithreaded environment is difficult.

If you use C++ locales, on the other hand, the problem simply goes
away. You can imbue each stream with a separate locale object,
making inadvertent switches impossible.

Let us now see how C++ locales are intended to be used.

1.3.4.2 Common Uses of C++Locales

The C++ locale is commonly used as a default locale, with multiple
locales, and as a global locale.

the global locale

external file

- D S D Q

internal buffer

S D Q

�(6&! � %

Japanese
usingJISJIS

Rogue Wave Standard C++ Library Internationalization 25

Default locale. If you are not involved with internationalizing
programs, you won't need C++ locales any more than you need C
locales. If you can safely assume that users of your applications are
accommodated by classic US English ASCII behavior, you will not
require localization features. For you, the Standard C++ Library
provides a predefined locale object, locale::classic() , that
represents the US English ASCII locale.

Multiple locales. Working with many different locales becomes
easy when you use C++ locales. Switching locales, as you did in C,
is no longer necessary in C++. You can imbue each stream with a
different locale object. You can pass locale objects around and use
them in multiple places.

Global locale. There is a global locale in C++, as there is in C. You
can make a given locale object global by calling locale::global() .
You can create snapshots of the current global locale by calling the
default constructor for a locale locale::locale() . Snapshots are
immutable locale objects and are not affected by any subsequent
changes to the global locale. Internationalized components like
iostreams use it as a default. If you do not explicitly imbue your
streams with any particular locale object, a snapshot of the global
locale is used.

Using the global C++ locale, you can work much as you did in C.
You activate the native locale once at program start— in other
words, you make it global— and use snapshots of it thereafter for all
tasks that are locale-dependent. The following code demonstrates
this procedure:

locale::global(locale(“”)); //1
…
string t = print_date(today, locale()); //2
…
locale::global(locale(“Fr_CH”)); //3
…
cout << something; //4

//1 Make the native locale global.

//2 Use snapshots of the global locale whenever you need a locale
object. Assume that print_date() is a function that formats
dates. You would provide the function with a snapshot of the
global locale in order to do the formatting.

//3 Switch the global locale; make a French locale global.

//4 Note that you need not explicitly imbue any streams with the
global locale. They use a snapshot of the global locale by
default.

26 Internationalization Rogue Wave Standard C++ Library

1.3.5 Relationship between the C Locale and the C++ Locale

The C locale and the C++ locales are mostly unrelated. However,
making a C++ locale object global via locale::global() affects the
global C locale and results in a call to setlocale() . When this
happens, locale-sensitive C functions called from within a C++
program will use the global C++ locale.

There is no way to affect the C++ locale from within a C program.

1.4 The Locale
A C++ locale object is a container of facet objects that encapsulates
internationalization services and represent culture and language
dependencies. Here are some functions of class locale which allow
you to create locales:

class locale {
 public:
// construct/copy/destroy:
 explicit locale(const char* std_name); \\1
// global locale objects:
 static const locale& classic(); \\2
};

//1 You can create a locale object from a C locale’s external
representation. The constructor locale::locale(const char*

std_name) takes the name of a C locale. This locale name is like
the one you would use for a call to the C library function
setlocale() .

//2 You can also use a predefined locale object, locale ::

classic() , which represents the US English ASCII environment.

For a comprehensive description of the constructors described above,
see the Class Reference.

It's important to understand that locales are immutable objects:
once a locale object is created, it cannot be modified. This makes
locales reliable and easy to use. As a programmer, you know that
whenever you use pointers or references to elements held in a
container, you have to worry about the validity of the pointers and
references. If the container changes, pointers and references to its
elements might not be valid any longer.

A locale object is a container, too. However, it is an immutable
container; that is, it does not change. Therefore, you can take a
reference to a locale’s facet object and pass the reference around
without worrying about the validity of this reference. The related
locale object will never be modified; no facets can be silently
replaced.

Rogue Wave Standard C++ Library Internationalization 27

At some time, you will most likely need locale objects other than the
US classic locale or a snapshot of the global locale. Since locales are
immutable objects, however, you cannot take one of these and
replace its facet objects. You have to say at construction time how
they shall be built.

Here are some constructors of class locale which allow you to build
a locale object by composition; in other words, you construct it by
copying an existing locale object, and replacing one or several facet
objects.

class locale {
public:
 locale(const locale& other, const char* std_name, category);
 template <class Facet> locale(const locale& other, Facet* f);
 template <class Facet> locale(const locale& other
 ,const locale& one);
 locale(const locale& other, const locale& one, category);
};

The following example shows how you can construct a locale object
as a copy of the classic locale object, and take the numeric facet
objects from a German locale object:

locale loc (locale::classic(), locale(“De_DE”), LC_NUMERIC);

For a comprehensive description of the constructors described above,
see the Class Reference.

Copying a locale object is a cheap operation. You should have no
hesitation about passing locale objects around by value. You may
copy locale objects for composing new locale objects; you may pass
copies of locale objects as arguments to functions, etc.

Locales are implemented using reference counting and the handle-
body-idiom8: When a locale object is copied, only its handle is
duplicateda fast and inexpensive action. Similarly, constructing a
locale object with the default constructor is cheap— this is
equivalent to copying the global locale object. All other locale
constructors that take a second locale as an argument are
moderately more expensive, because they require cloning the body
of the locale object. However, the facets are not all copied. The
byname constructor is the most expensive, because it requires
creating the locale from an external locale representation.

8 A good reference for an explanation of the handle-body

idiom is: “Advanced C++ Programming Styles and
Idioms,” James O. Coplien, Addison-Wesley, 1992,
ISBN 0-201-54855-0.

28 Internationalization Rogue Wave Standard C++ Library

The following figure describes an overview of the locale architecture.
It is a handle to a body that maintains a vector of pointers of facets.
The facets are reference-counted, too.

Figure 10. The locale architecture

1.5 The Facets
A facet is a nested class inside class locale ; it is called
locale::facet . Facet objects encapsulate internationalization
services, and represent culture and language dependencies.

1.5.1 Creating a Facet Object

There are several ways to create facet objects:

• Buy a facet library, which provides you with facet classes and
objects.

• Build your own facet classes and construct facet objects.

locale l2(l1)

locale l1(“de”)
imp

WLPHBJHW�!WLPHBJHW�!

WLPHBSXW�!WLPHBSXW�!

FRGHFYW�!FRGHFYW�!

get_time ()

get_date ()

...

put()

...

convert()

...

locale l3
(l2,locale(”fr”)
,LC_TIME)

vector<facet*>

WLPHBJHW�!WLPHBJHW�!

WLPHBSXW�!WLPHBSXW�!

get_time ()

get_date ()

...

put()

...

imp

vector<facet*>

Rogue Wave Standard C++ Library Internationalization 29

• Build facet objects from the external representation of a C locale.
This is done via the constructor of one of the byname9 facet
classes from the Standard C++ Library, as shown in the figure

below:

Figure 11. Creating facet objects

Facets are interdependent. For example, the num_get and num_put

facet objects rely on a numpunct facet object. In most cases, facet
objects will not be used independently of each other, but will be
grouped together in a locale object. For this reason, facet objects are
usually constructed along with the locale object that maintains
them. You will only rarely need to construct a single facet for stand-
alone use.

However, the example below demonstrates how you would write the
code to construct and use a single facet object if needed. It is an

9 A byname facet creates a facet from the external

representation of a C locale. See section 1.3.3.1 for
the naming conventions of facet names.

/RFDOH/RFDOH

)DFHW,G

&�� /LEUDU\

LC_NUM ERIC

LC_M ONETARY

LC_TIM E

...

H[WHUQDO

UHSUHVHQDWLRQ RI D

& ORFDOH

6WDQGDUG

&�� /LEUDU\

WLPHBJHWBE\QDPH�!WLPHBJHWBE\QDPH�!

WLPHBSXWBE\QDPH�!WLPHBSXWBE\QDPH�!

FRGHFYWBE\QDPH�!FRGHFYWBE\QDPH�!

get_time()

get_date()

...

put()

...

convert()

...

IDFHW OLEUDU\

SKRQH QXPEHUSKRQH QXPEHU

IRUPDWWLQJIRUPDWWLQJ

$6&,,�(%&',&$6&,,�(%&',&

FRGH FRQYHUVLRQFRGH FRQYHUVLRQ

put()

get_area_code()

...

convert()

...

30 Internationalization Rogue Wave Standard C++ Library

example of a locale-sensitive string comparison, which in C you
would perform using the strcoll() function.10

string name1(“Peter Gartner”);
string name2 (“Peter Gärtner”);
collate_byname<char> collFacet(“De_DE”); \\1
if (collFacet.compare \\2
 (name1.begin(), name1.end(), name2.begin(), name2.end())
 == -1)
{ … }

//1 A collation facet object is constructed. It is created from a
German C locale’s external representation.

//2 The member function compare() of this facet object is used for
string comparison.

1.5.2 Accessing a Locale’s Facets

A locale object is like a container— or a map, to be more precise—
but it is indexed by type at compile time. The indexing operator,
therefore, is not operator[] , but rather the template operator <>.
Access to the facet objects of a locale object is via two member
function templates, use_facet and has_facet :

template <class Facet> const Facet& use_facet(const locale&);
template <class Facet> bool has_facet(const locale&);

The code below demonstrates how they are used. It is an example
of the ctype facet’s usage; all upper case letters of a string read from
the standard input stream are converted to lower case letters and
written to the standard output stream.

string in;
cin >> in;
if (has_facet< ctype<char> >(locale::locale())) \\1
{ cout << use_facet< ctype<char> >(locale::locale()) \\2
 .tolower(in.begin(),in.end()); \\3
}

//1 In the call to has_facet<...>() , the template argument chooses
a facet class. If no object of the named facet class is present in
a locale object, has_facet returns false .

//2 The function template use_facet<…>() returns a reference to a
locale’s facet object. As locale objects are immutable, the

10 The string class in the Standard C++ Library does not

provide any service for locale-sensitive string
comparisons. Hence, you will usually use a collate
facet’s compare service instead.

Rogue Wave Standard C++ Library Internationalization 31

reference to a facet object obtained via use_facet() stays valid
throughout the lifetime of the locale object.

//3 The facet object’s member function tolower() is called. It has
the functionality of the C function tolower() ; it converts all
upper case letters into lower case letters.

In most situations, you do not have to check whether a locale has a
standard facet object like ctype . Most locale objects are created by
composition, starting with a locale object constructed from a C
locale’s external representation. Locale objects created this way,
that is, via a byname constructor, always have all of the standard
facet objects. Because you can only add or replace facet objects in
a locale object, you cannot compose a locale that misses one of the
standard facets.

A call to has_facet() is useful though, when you expect that a
certain non-standard facet object should be present in a locale
object.

1.5.3 Using a Stream’s Facet

Here is a more advanced example that uses a time facet for printing
a date. Let us assume we have a date and want to print it this way:

struct tm aDate; //1
aDate.tm_year = 1989;
aDate.tm_mon = 9;
aDate.tm_mday = 1; //2

cout.imbue(locale::locale(“De_CH”)); //3
cout << aDate; //4

//1 A date object is created. It is of type tm, which is the time
structure defined in the standard C library.

//2 The date object is initialized with a particular date, September 1,
1989.

//3 Let’s assume our program is supposed to run in a German-
speaking canton of Switzerland. Hence, a Swiss locale is
attached to the standard output stream.

//4 The date is printed in German to the standard output stream.

The output will be: 1. September 1989

As there is no operator<<() defined in the Standard C++ Library for
the time structure tm from the C library, we have to provide this
inserter ourselves. The following code suggests a way this can be

32 Internationalization Rogue Wave Standard C++ Library

done. If you are not familiar with iostreams, you will want to refer to
the iostreams section of this User's Guide for more information.

To keep it simple, the handling of exceptions thrown during the
formatting is omitted.

template<class charT, class traits>
basic_ostream<charT, traits>&
operator<<(basic_ostream<charT,traits>& os, const tm& date) \\1
{
 locale loc = os.getloc(); \\2
 typedef ostreambuf_iterator<charT,traits> outIter_t; \\3
 const time_put<charT,outIter_t>& fac; \\4
 fac = use_facet < time_put<charT, bufIter_t > > (loc); \\5
 outIter_t nxtpos; \\6
 nxtpos = fac.put(os,os,os.fill(),&date,'x'); \\7
 if (nxtpos.failed()) \\8
 os.setstate(ios_base::badbit); \\9
 return os;
}

//1 This is a typical signature of a stream inserter; it takes a
reference to an output stream and a constant reference to the
object to be printed, and returns a reference to the same stream.

//2 The stream’s locale object is obtained via the stream’s member
function getloc() . This is the locale object where we expect to
find a time-formatting facet object.

//3 We define a type for an output iterator to a stream buffer.

 Time formatting facet objects write the formatted output via an
iterator into an output container (see the sections on containers
and iterators in the User's Guide). In principle, this can be an
arbitrary container that has an output iterator, such as a string
or a C++ array.

 Here we want the time-formatting facet object to bypass the
stream’s formatting layer and write directly to the output
stream’s underlying stream buffer. Therefore, the output
container shall be a stream buffer.

//4 We define a variable that will hold a reference to the locale
object’s time_put facet object. The time formatting facet class
time_put has two template parameters:

 The first template parameter is the character type used for
output. Here we provide the stream’s character type as the
template argument.

 The second template parameter is the output iterator type. Here
we provide the stream buffer iterator type outIter_t that we
had defined as before.

Rogue Wave Standard C++ Library Internationalization 33

//5 Here we get the time-formatting facet object from the stream’s
locale via use_facet() .

//6 We define a variable to hold the output iterator returned by the
facet object’s formatting service.

//7 The facet object’s formatting service put() is called. Let us see
what arguments it takes. Here is the function’s interface:

 iter_type put (iter_type (a)

 ,ios_base& (b)

 ,char_type (c)

 ,const tm* (d)

 ,char) (e)

 The types iter_type and char_type stand for the types that were
provided as template arguments when the facet class was
instantiated. In this case, they are
ostreambuf_iterator<charT,traits> and charT , where charT and
traits are the respective streams template arguments.

 Here is the actual call:

 nextpos = fac.put(os,os,os.fill(),&date,'x');

 Now let’s see what the arguments mean:

a) The first parameter is supposed to be an output iterator. We
provide an iterator to the stream’s underlying stream buffer.
The reference os to the output stream is converted to an
output iterator, because output stream buffer iterators have
a constructor taking an output stream, that is,
basic_ostream<charT,traits>& .

b) The second parameter is of type ios_base&, which is one of
the stream base classes. The class ios_base contains data
for format control (see the section on iostreams for details).
The facet object uses this formatting information. We
provide the output stream’s ios_base part here, using the
automatic cast from a reference to an output stream, to a
reference to its base class.

c) The third parameter is the fill character. It is used when the
output has to be adjusted and blank characters have to be
filled in. We provide the stream’s fill character, which one
can get by calling the stream’s fill() function.

d) The fourth parameter is a pointer to a time structure tm from
the C library.

34 Internationalization Rogue Wave Standard C++ Library

e) The fifth parameter is a format character as in the C
function strftime() ; the x stands for the locale’s appropriate
date representation.

f) The value returned is an output iterator that points to the
position immediately after the last inserted character.

//8 As we work with output stream buffer iterators, we can even
check for errors happening during the time formatting. Output
stream buffer iterators are the only iterators that have a member
function failed() for error indication. 11

//9 If there was an error, we set the stream’s state accordingly. See
the section on iostreams for details on the setstate() function
and the state bits.

1.5.4 Creating a Facet Class for Replacement in a Locale

At times you may need to replace a facet object in a locale by
another kind of facet object. In the following example, let us derive
from one of the standard facet classes, numpunct , and create a locale
object in which the standard numpunct facet object is replaced by an
instance of our new, derived facet class.

Here is the problem we want to solve. When you print boolean
values, you can choose between the numeric representation of the
values "true" and "false" , or their alphanumeric representation.

int main(int argc, char** argv)
{
 bool any_arguments = (argc > 1); \\1
 cout.setf(ios_base::boolalpha); \\2
 cout << any_arguments << ‘\n’; \\3
 // …
}

//1 A variable of type bool is defined. Its initial value is the
boolean value of the logical expression (argc > 1) , so the
variable any_arguments contains the information, whether the
program was called with or without arguments.

11 Note that the use of the put() function of a formatting facet

is inherently unsafe, if you work with output iterators
other than output stream buffer iterators. It is
especially dangerous if you work with output
iterators that refer to fixed-size containers, like a C++
array for example. There is no way to check
whether the facet does not write beyond the
containers end.

Rogue Wave Standard C++ Library Internationalization 35

//2 The format flag ios_base:: boolalpha is set in the predefined
output stream cout . The effect is that the string representation of
boolean values is printed, instead of their numerical
representation 0 or 1, which is the default representation.

//3 Here either the string "true" or the string "false" will be printed.

Of course, the string representation depends on the language.
Hence, the alphanumeric representation of boolean values is
provided by a locale. It is the numpunct facet of a locale that
describes the cultural conventions for numerical formatting. It has a
service that provides the string representation of the boolean values
true and false .12

This is the interface of facet numpunct :

template <class charT>
 class numpunct : public locale::facet {
 public:
 typedef charT char_type;
 typedef basic_string<charT> string_type;
 explicit numpunct(size_t refs = 0);
 string_type decimal_point() const;
 string_type thousands_sep() const;
 vector<char> grouping() const;
 string_type truename () const;
 string_type falsename () const;
 static locale::id id;
};

Now let us replace this facet. To make it more exciting, let's use not
only a different language, but also different words for true and
false , such as Yes! and No! . For just using another language, we
would not need a new facet; we would simply use the right native
locale, and it would contain the right facet.

template <class charT, charT* True, charT* False> //1
class CustomizedBooleanNames
: public numpunct_byname<charT> { //2
 typedef basic_string<charT> string;
 protected:
 string do_truename() {return True;} //3
 string do_falsename() {return False;}
 ~CustomizedBooleanNames() {}
 public:
 explicit CustomizedBooleanNames(const char* LocName) //4
 : numpunct_byname<charT>(LocName) {}
};

12 You might be surprised to find the string representation of

boolean values in the numpunct facet, because bool
values are not numerical values. However, that’s
the way the facets are organized.

36 Internationalization Rogue Wave Standard C++ Library

//1 The new facet is a class template that takes the character type
as a template parameter, and the string representation for true

and false as non-type template parameters.

//2 The new facet is derived from the numpunct_byname<charT> facet.

 The byname facets read the respective locale information from
the external representation of a C locale. The name provided to
construct a byname facet is the name of a locale, as you would
use it in a call to setlocale() .

//3 The virtual member functions do_truename() and do_falsename()

are reimplemented. They are called by the public member
functions truename() and falsename() . See the Class Reference
for further details.

//4 A constructor is provided that takes a locale name. This locale’s
numpunct facet will be the basis for our new facet.

Now let’s replace the numpunct facet object in a given locale object,
as shown in the following figure:

Figure 12. Replacing the numpunct facet object

The code looks like this:

char Yes[] = "Ja.";
char No[] = "Nein.";

void main(int argc, char** argv)
{
 locale loc(locale("de_DE"), \\1
 new CustomizedBooleanNames<char,Yes,No>("de_DE")); \\2
 cout.imbue(loc); \\3
 cout << “Argumente vorhanden? ” //Any arguments?
 << boolalpha << (argc > 1) << endl; \\4

/RFDOH
)DFHW,G

num_get<>

num_put<>

numpunct<>

moneypunct<>

time_get<>

time_put<>

ctype<>

codecvt<>

message<>

...

...

CustomizedBooleanNames

Rogue Wave Standard C++ Library Internationalization 37

}

//1 A locale object is constructed with an instance of the new facet
class. The locale object will have all facet objects from a
German locale object, except that the new facet object
CustomizedBooleanNames will substitute for the numpunct facet
object.

//2 The new facet object takes all information from a German
numpunct facet object, and replaces the default native names
true and false with the provided strings “Ja.” (“Yes.”) and
“Nein.” (“No.”).

 Note that the facet object is created on the heap. That's
because the locale class by default manages installation,
reference-counting, and destruction of all its facet objects.

//3 The standard output stream cout is imbued with the newly
created locale object.

//4 The expression (argc > 1) yields a boolean value, which
indicates whether the program was called with arguments.
This boolean value’s alphanumeric representation is printed to
the standard output stream. The output might be:

 Argument vorhanden? Ja.

1.5.5 The Facet Id

In the example discussed above, we derived a new facet class from
one of the standard facet classes, then replaced an object of base
class type by one of derived class type. The inheritance relationship
of the facet classes is essential if you plan on replacing facet objects.
Let us see why this is true.

A locale object maintains a set of facet objects. Each facet object
has an identification that serves as an index to the set of facet
objects. This identification, called id, is a static data member of the
respective facet class. Whether or not a facet object will replace
another facet, or be an actual addition to the locale object’s set of
facet objects, solely depends on the facet’s identification.

The base class of all facets, class locale::facet , does not have a
facet identification. The class locale::facet performs the function of
an abstract base class; there will never be any facet object of the
base class type. However, all concrete facet classes have to define
a facet identification. In the example above, we inherited the facet
identification from the base class we derived from, that is, the
standard facet class numpunct . Every object of our facet class
CustomizedBooleanNames has a facet identification that identifies it as

38 Internationalization Rogue Wave Standard C++ Library

a numpunct facet. As the facet identification serves as an index to the
locale object’s set of facets, our facet object replaced the current
numpunct facet object in the locale object’s set of facet objects.

If you do not want to replace a facet object, but want to add a new
kind of facet object, we have to provide it with a facet identification
different from all existing facet identifications. The following
example will demonstrate how this can be achieved.

1.5.6 Creating a Facet Class for Addition to a Locale

At times you may need to add a facet object to a locale. This facet
object must have a facet identification that distinguishes it from all
existing kinds of facets.

Here is an example of a new facet class like that. It is a facet that
checks whether a given character is a German umlaut13, that is, one
of the special characters äöüÄÖÜ.

class Umlaut : public locale::facet { \\1
 public:
 static locale::id id; \\2
 bool is_umlaut(char c); \\3
 Umlaut() {}
 protected:
 ~Umlaut() {}
};

//1 All facet classes have to be derived from class locale::facet .

//2 Here we define the static data member id . It is of type
locale::id . The default constructor of the facet identification
class locale::id assigns the next unused identification to each
object it creates. Hence, it is not necessary, nor even possible, to
explicitly assign a value to the static facet id object. In other
words, this definition does the whole trick; our facet class will
have a facet identification that distinguishes it from all other
facet classes.

//3 A member function is_umlaut() is declared that returns true if
the character is a German umlaut.

Now let’s add the new facet object to a given locale object, as
shown in the following figure:

13Generally, an umlaut is a composed character consisting of

a vowel as the base character and a diaeresis, that
is, two dots placed over a vowel, as the diacritic.
The diaeresis is used in German and other European
languages to indicate a change in the
pronunciation of the vowel.

Rogue Wave Standard C++ Library Internationalization 39

Figure 13. Adding a new facet to a locale

The code for this procedure is given below:

locale loc(locale(““), // native locale
 new Umlaut); // the new facet //1
char c,d;
while (cin >> c){
 d = use_facet<ctype<char> >(loc).tolower(c); //2
 if (has_facet<Umlaut>(loc)) //3
 { if (use_facet<Umlaut>(loc).is_umlaut(d)) //4
 cout << c << “belongs to the German alphabet!” << ‘\n’;
 }
}

//1 A locale object is constructed with an instance of the new facet
class. The locale object will have all facet objects from the
native locale object, plus an instance of the new facet class
Umlaut .

//2 Let's assume our new umlaut facet class is somewhat limited; it
can handle only lower case characters. Thus we have to
convert each character to a lower case character before we
hand it over to the umlaut facet object. This is done by using a
ctype facet object’s service function tolower() .

//3 Before we use the umlaut facet object, we check whether such
an object is present in the locale. In a toy example like this it is
obvious, but in a real application it is advisable to check for the
existence of a facet object, especially if it is a non-standard
facet object we are looking for.

//4 The umlaut facet object is used, and its member function
is_umlaut() is called. Note that the syntax for using this newly
contrived facet object is exactly like the syntax for using the
standard ctype facet.

/RFDOH
)DFHW,G

num_get<>

num_put<>

numpunct<>

moneypunct<>

time_get<>

time_put<>

ctype<>

codecvt<>

message<>

...
Umlaut

40 Internationalization Rogue Wave Standard C++ Library

1.6 User-Defined Facets: An Example
The previous sections explained how to use locales and the standard
facet classes, and how you can build new facet classes. This section
introduces you to the technique of building your own facet class and
using it in conjunction with the input/output streams of the Standard
C++ Library, the iostreams. This material is rather advanced, and
requires some knowledge of standard iostreams.

In the following pages, we will work through a complete example
on formatting telephone numbers. Formatting telephone numbers
involves local conventions that vary from culture to culture. For
example, the same US phone number can have all of the formats
listed below:

754-3010 Local

 (541) 754-3010 Domestic

+1-541-754-3010 International

1-541-754-3010 Dialed in the US

001-541-754-3010 Dialed from Germany

191 541 754 3010 Dialed from France

Now consider a German phone number. Although a German phone
number consists of an area code and an extension like a US number,
the format is different. Here is the same German phone number in a
variety of formats:

636-48018 Local

(089) / 636-48018 Domestic

+49-89-636-48018 International

19-49-89-636-48018 Dialed from France

Note the difference in formatting domestic numbers. In the US, the
convention is 1 (area code) extension , while in Germany it is (0
area code)/extension .

1.6.1 A Phone Number Class

An application that has to handle phone numbers will probably
have a class that represents a phone number. We will also want to
read and write telephone numbers via iostreams, and therefore
define suitable extractor and inserter functions. For the sake of
simplicity, we will focus on the inserter function in our example.

Rogue Wave Standard C++ Library Internationalization 41

To begin, here is the complete class declaration for the telephone
number class phoneNo :

class phoneNo
{
public:
 typedef basic_ostream<char> outStream_t;
 typedef string string_t;

 phoneNo(const string_t& cc,const string_t& ac,const string_t& ex)
 : countryCode(cc), areaCode(ac), extension(ex) {}

private:
 string_t countryCode; //"de"
 string_t areaCode; //"89"
 string_t extension; //"636-48018"

friend phoneNo::outStream_t& operator<<
 (phoneNo::outStream_t&, const phoneNo&);
};

1.6.2 A Phone Number Formatting Facet Class

Now that we have locales and facets in C++, we can encapsulate
the locale-dependent parsing and formatting of telephone numbers
into a new facet class. Let’s focus on formatting in this example. We
will call the new facet class phone_put , analogous to time_put ,
money_put , etc.

The phone_put facet class serves solely as a base class for facet
classes that actually implement the locale-dependent formatting.
The relationship of class phone_put to the other facet classes is

illustrated in the figure below:

Figure 14. The relationship of the phone_put facet to the
implementing facets

Here is a first tentative declaration of the new facet class phone_put :

class phone_put: public locale::facet //1
{
public:
 static locale::id id; //2
 phone_put(size_t refs = 0) : locale::facet(refs) { } //3

phone_put

German_phone_putUS_phone_put

42 Internationalization Rogue Wave Standard C++ Library

 string_t put(const string_t& ext
 ,const string_t& area
 ,const string_t& cnt) const; //4
};

//1 Derive from the base class locale::facet , so that a locale object
will be able to maintain instances of our new phone facet class.

//2 New facet classes need to define a static data member id of
type locale::id .

//3 Define a constructor that takes the reference count that will be
handed over to the base class.

//4 Define a function put() that does the actual formatting.

1.6.3 An Inserter for Phone Numbers

Now let’s take a look at the implementation of the inserter for our
phone number class:

ostream& operator<<(ostream& os, const phoneNo& pn)
{
 locale loc = os.getloc(); //1
 const phone_put& ppFacet = use_facet<phone_put> (loc); //2
 os << ppFacet.put(pn.extension, pn.areaCode, pn.countryCode);//3
 return (os);
}

//1 The inserter function will use the output stream’s locale object
(obtained via getloc()),

//2 use the locale’s phone number facet object,

//3 and call the facet object’s formatting service put() .

1.6.4 The Phone Number Facet Class Revisited

Let us now try to implement the phone number facet class. What
does this facet need to know?

• A facet needs to know its own locality, because a phone number
is formatted differently for domestic and international use; for
example, a German number looks like (089) / 636-48018 when
used in Germany, but it looks like +1-49-89-636-48018 when used
internationally.

• A facet needs information about the prefix for dialing
international numbers; for example, 011 for dialing foreign
numbers from the US, or 00 from Germany, or 19 from France.

• A facet needs access to a table of all country codes, so that one
can enter a mnemonic for the country instead of looking up the

Rogue Wave Standard C++ Library Internationalization 43

respective country code. For example, I would like to say: “This
is a phone number somewhere in Japan” without having to
know what the country code for Japan is.

1.6.4.1 Adding Data Members

The following class declaration for the telephone number formatting
facet class is enhanced with data members for the facet object's own
locality, and its prefix for international calls (see //2 and //3 in the
code below). Adding a table of country codes is omitted for the time
being.

class phone_put: public locale::facet {
public:
 typedef string string_t;
 static locale::id id;
 phone_put(size_t refs = 0) : locale::facet(refs)
 , myCountryCode_("")
 , intlPrefix_("") { }
 string_t put(const string_t& ext,
 const string_t& area,
 const string_t& cnt) const;
protected:
 phone_put(const string_t& myC //1
 , const string_t& intlP
 , size_t refs = 0)
 : locale::facet(refs)
 , myCountryCode_(myC)
 , intlPrefix_(intlP) { }
 const string_t myCountryCode_; //2
 const string_t intlPrefix_; //3
};

Note how this class serves as a base class for the facet classes that
really implement a locale-dependent phone number formatting.
Hence, the public constructor does not need to be extended, and a
protected constructor is added instead (see //1 above).

1.6.4.2 Adding Country Codes

Let us now deal with the problem of adding the international
country codes that were omitted from the previous class declaration.
These country codes can be held as a map of strings that associates
the country code with a mnemonic for the country’s name, as shown

myCountryCode_
intlPrefix_

country_codes_

myCountryCode_
intlPrefix_

country_codes_

phone_put prefixMap_t
“US” “1”

“Fr” “33”

“Jp” “81”

“De” “49”

“UK” “44”

44 Internationalization Rogue Wave Standard C++ Library

in the figure below:

Figure 15. Map associating country codes with mnemonics for
countries' names

In the following code, we add the table of country codes:

class phone_put: public locale::facet
{
 public:
 class prefixMap_t : public map<string,string> //1
 {
 public:
 prefixMap_t() { insert(tab_t(string("US"),string("1")));
 insert(tab_t(string("De"),string("49")));
 // ...
 }
};
 static const prefixMap_t* std_codes() //2
 { return &stdCodes_; }
 protected:
 static const prefixMap_t stdCodes_; //3
};

As the table of country codes is a constant table that is valid for all
telephone number facet objects, it is added as a static data member
stdCodes_ (see //3). The initialization of this data member is
encapsulated in a class, prefixMap_t (see //1). For convenience, a
function std_codes() is added to give access to the table (see //2).

Despite its appealing simplicity, however, having just one static
country code table might prove too inflexible. Consider that
mnemonics might vary from one locale to another due to different
languages. Maybe mnemonics are not called for, and you really
need more extended names associated with the actual country
code.

In order to provide more flexibility, we can build in the ability to
work with an arbitrary table. A pointer to the respective country
code table can be provided when a facet object is constructed. The

myCountryCode_
intlPrefix_

country_codes_

myCountryCode_
intlPrefix_

country_codes_

phone_put prefixMap_t
“Etats Unis” “1”

“France” “33”

“Japon” “81”

“Allemagne” “49”

“Grande Bretagne” “44”

Rogue Wave Standard C++ Library Internationalization 45

static table, shown in the figure below, will serve as a default:

Figure 16. Map associating country codes with country names

Since we hold the table as a pointer, we need to pay attention to
memory management for the table pointed to. We will use a flag for
determining whether the provided table needs to be deleted when
the facet is destroyed. The following code demonstrates use of the
table and its associated flag:

class phone_put: public locale::facet {
public:
 typedef string string_t;
 class prefixMap_t;
 static locale::id id;

 phone_put(const prefixMap_t* tab=0 //1
 , bool del = false
 , size_t refs = 0)
 : locale::facet(refs)
 , countryCodes_(tab), delete_it_(del)
 , myCountryCode_(""), intlPrefix_("")
 { if (tab) { countryCodes_ = tab;
 delete_it_ = del; }
 else { countryCodes_ = &stdCodes_; //2
 delete_it_ = false; }
 }
 string_t put(const string_t& ext,
 const string_t& area,
 const string_t& cnt) const;

 const prefixMap_t* country_codes() const //3
 { return countryCodes_; }

 static const prefixMap_t* std_codes() { return &stdCodes_; }
protected:
 phone_put(const string_t& myC, const string_t& intlP
 , const prefixMap_t* tab=0, bool del = false
 , size_t refs = 0)
 : locale::facet(refs)
 , countryCodes_(tab), delete_it_(del)
 , myCountryCode_(myC), intlPrefix_(intlP)
 { ... }
 virtual ~phone_put()
 { if(delete_it_)
 countryCodes_->prefixMap_t::~prefixMap_t(); //4
 }

 const prefixMap_t* countryCodes_; //5
 bool delete_it_;
 static const prefixMap_t stdCodes_;
 const string_t myCountryCode_;
 const string_t intlPrefix_;
};

//1 The constructor is enhanced to take a pointer to the country
code table, together with the flag for memory management of
the provided table.

46 Internationalization Rogue Wave Standard C++ Library

//2 If no table is provided, the static table is installed as a default.

//3 For convenience, a function that returns a pointer to the current
table is added.

//4 The table is deleted if the memory management flags says so.

//5 Protected data members are added to hold the pointer to the
current country code table, as well as the associated memory
management flag.

1.6.5 An Example of a Concrete Facet Class

As mentioned previously, the phone number facet class is intended
to serve as a base class. Let's now present an example of a concrete
facet class, the US phone number formatting facet. It works by
default with the static country code table and “US” as its own
locality. It also knows the prefix for dialing foreign numbers from the
US. Here is the class declaration for the facet:

class US_phone_put : public phone_put {
public:
 US_phone_put(const prefixMap_t* tab=0
 , const string_t& myCod = "US"
 , bool del = false
 , size_t refs = 0)
 : phone_put(myCod,"011",tab,del,refs)
 { }
};

Other concrete facet classes are built similarly.

1.6.6 Using Phone Number Facets

Now that we have laid the groundwork, we will soon be ready to
format phone numbers. Here is an example of how instances of the
new facet class can be used:

ostream ofstr("/tmp/out");
ostr.imbue(locale(locale::classic(),new US_phone_put)); //1
ostr << phoneNo("Fr","1","60 17 07 16") << endl;
ostr << phoneNo("US","541","711-PARK") << endl;

ostr.imbue(locale(locale(“Fr”) //2
 ,new Fr_phone_put (&myTab,"France")));
ostr << phoneNo("Allemagne","89","636-40938") << endl; //3

//1 Imbue an output stream with a locale object that has a phone
number facet object. In the example above, it is the US English
ASCII locale with a US phone number facet, and

//2 a French locale using a French phone number facet with a
particular country code table.

Rogue Wave Standard C++ Library Internationalization 47

//3 Output phone numbers using the inserter function.

 The output will be: 011-33-1-60170716

 (541) 711-PARK

 19 49 89 636 40938

1.6.7 Formatting Phone Numbers

Even now, however, the implementation of our facet class is
incomplete. We still need to mention how the actual formatting of a
phone number will be implemented. In the example below, it is
done by calling two virtual functions, put_country_code() and
put_domestic_area_code() :

class phone_put: public locale::facet {
public:
 // …
 string put(const string& ext,
 const string& area,
 const string& cnt) const;
protected:
 // …
 virtual string_t put_country_code
 (const string_t& country) const = 0;
 virtual string_t put_domestic_area_code
 (const string_t& area) const = 0;
};

Note that the functions put_country_code() and
put_domestic_area_code() are purely virtual in the base class, and
thus must be provided by the derived facet classes. For the sake of
brevity, we spare you here the details of the functions of the derived
classes. For more information, please consult the directory of sample
code delivered on disk with this product.

48 Internationalization Rogue Wave Standard C++ Library

1.6.8 Improving the Inserter Function

Let’s turn here to improving our inserter function. Consider that the
country code table might be huge, and access to a country code
might turn out to be a time-consuming operation. We can optimize
the inserter function’s performance by caching the country code
table, so that we can access it directly and thus reduce performance
overhead.

1.6.8.1 Primitive Caching

The code below does some primitive caching. It takes the phone
facet object from the stream’s locale object and copies the country
code table into a static variable.

ostream& operator<<(ostream& os, const phoneNo& pn)
{
 locale loc = os.getloc();
 const phone_put& ppFacet = use_facet<phone_put> (loc);

 // primitive caching
 static prefixMap_t codes = *(ppFacet.country_codes());

 // some sophisticated output using the cached codes
 ...
 return (os);
}

Now consider that the locale object imbued on a stream might
change, but the cached static country code table does not. The
cache is filled once, and all changes to the stream’s locale object
have no effect on this inserter function’s cache. That’s probably not
what we want. What we do need is some kind of notification each
time a new locale object is imbued, so that we can update the
cache.

1.6.8.2 Registration of a Callback Function

In the following example, notification is provided by a callback
function. The iostreams allow registration of callback functions.
Class ios_base declares:

enum event { erase_event, imbue_event, copyfmt_event }; //1
typedef void (*event_callback) (event, ios_base&, int index);
void register_callback (event_callback fn, int index); //2

//1 Registered callback functions are called for three events:

• Destruction of a stream,

• Imbuing a new locale, and

• Copying the stream state.

Rogue Wave Standard C++ Library Internationalization 49

//1 The register_callback() function registers a callback function
and an index to the stream’s parray . During calls to imbue() ,
copyfmt() or ~ios_base() , the function fn is called with
argument index . Functions registered are called when an event
occurs, in opposite order of registration.

 The parray is a static array in base class ios_base . One can
obtain an index to this array via xalloc() , and access the
array via pword(index) or iword(index) , as shown in the figure

below:

Figure 17. The static array parray

In order to install a callback function that updates our cache, we
implement a class that retrieves an index to parray and creates the
cache, then registers the callback function in its constructor. The
procedure is shown in the code below:

class registerCallback_t {
public:
registerCallback_t(ostream& os
 ,ios_base::event_callback fct
 ,prefixMap_t* codes)
 {
 int index = os.xalloc(); //1
 os.pword(index) = codes; //2
 os.register_callback(fct,index); //3
 }
};

//1 An index to the array is obtained via xalloc() .

//2 The pointer to the code table is stored in the array via pword() .

//3 The callback function and the index are registered.

parray

prefixMap_t
“US” “1”

“Fr” “33”

“Jp” “81”

“De” “49”

“UK” “44”

index
xalloc()

pword()

50 Internationalization Rogue Wave Standard C++ Library

The actual callback function will later have access to the cache via
the index to parray .

At this point, we still need a callback function that updates the
cache each time the stream’s locale is replaced. Such a callback
function could look like this:

void cacheCountryCodes(ios_base::event event
 ,ios_base& str,int cache)
{ if (event == ios_base::imbue_event) //1
 {
 locale loc = str.getloc();
 const phone_put<char>& ppFacet =
 use_facet<phone_put<char> > (loc); //2

 ((phone_put::prefixMap_t) str.pword(cache)) =
 *(ppFacet.country_codes()); //3
 }
}

//1 It checks whether the event was a change of the imbued locale,

//2 retrieves the phone number facet from the stream’s locale, and

//3 stores the country code table in the cache. The cache is
accessible via the stream’s parray .

1.6.8.3 Improving the Inserter

We now have everything we need to improve our inserter. It
registers a callback function that will update the cache whenever
necessary. Registration is done only once, by declaring a static
variable of class registerCallback_t .

ostream& operator<<(ostream& os, const phoneNo& pn)
{
 static phone_put::prefixMap_t codes =
 *(use_facet<phone_put>(os.getloc()).country_codes()); //1

 static registerCallback_t cache(os,cacheCountryCodes,&codes);//2

 // some sophisticated output using the cached codes
 ...
}

//1 The current country code table is cached.

//2 The callback function cacheCountryCodes is registered.

Rogue Wave Standard C++ Library Internationalization 51

