
STREAM INPUT/OUTPUT

Information pertaining to the C++ Standard Library has been edited
and incorporated into DIGITAL C++ documentation with permission
of Rogue Wave Software, Inc. All rights reserved.

Copyright 1994-1997 Rogue Wave Software, Inc.

Table of Contents

1. Stream Input/Output..5
1.1 How to Read this Section... 5

1.1.1 Terminology.. 5
1.1.2 Status of this document ... 6

1.2 The Architecture of Iostreams.. 6
1.2.1 What are the Standard Iostreams?...................................... 6
1.2.2 How do the Standard Iostreams Work? 8
1.2.3 How Do the Standard Iostreams Help Solve Problems? 11
1.2.4 Internal Structure of the Iostreams Layers 13

1.3 Formatted Input/Output ... 22
1.3.1 The Predefined Streams... 22
1.3.2 Input and Output Operators ... 22
1.3.3 Format Control Using the Stream’s Format State................ 24
1.3.4 Localization Using the Stream’s Locale.............................. 32
1.3.5 Formatted Input.. 32

1.4 Error State of Streams... 35
1.4.1 Checking the Stream State.. 37
1.4.2 Catching Exceptions ... 38

1.5 File Input/Output.. 39
1.5.1 Difference between Predefined File Streams (cin, cout, cerr,
and clog) and File Streams ... 40
1.5.2 Code Conversion in Wide Character Streams 40
1.5.3 Creating File Streams .. 40
1.5.4 The Open Mode.. 42
1.5.5 Binary and Text Mode .. 44
1.5.6 File Positioning .. 44

1.6 In-Memory Input/Output.. 44
1.6.1 The Internal Buffer .. 46
1.6.2 The Open Modes... 46

1.7 Input/Output of User-Defined Types 47
1.8 Manipulators .. 47
1.9 Locales.. 47
1.10 Extending Streams .. 47
1.11 Stream Buffers ... 47
1.12 Defining A Code Conversion Facet 47
1.13 User-Defined Character Types... 47
1.14 Differences from the Traditional Iostreams 47

1.14.1 The Character Type .. 48
1.14.2 Internationalization ... 48
1.14.3 File Streams... 48

Rogue Wave Standard C++ Library Stream Input/Output 3

1.14.4 String Streams ... 49
1.15 Differences from the Standard IOStreams.............................. 49

1.15.1 Extensions ... 49
1.15.2 Restrictions .. 50
1.15.3 Deprecated Features ... 50

Appendix: Open Issues in the Standard 51

S e c t i o nS e c t i o n 1.
Stream Input/Output

1.1 How to Read this Section
This section is an introduction to C++ stream input and output.
Section 1.2 explains the iostreams facility, how it works in principle,
and how it should be used. This section should be read by anyone
who needs basic information on iostreams. For readers who require
deeper understanding, the section also gives an overview of the
iostream architecture, its components, and class hierarchy. It is not
necessary to read this part in order to start using predefined
iostreams as explained in Section 1.3.

Sections 1.3 to 1.6 explain the basic operation of iostreams. These
sections can be read sequentially, or used as a reference for certain
topics. Read sequentially, they provide you with basic knowledge
needed for using iostreams. Used as a reference, they provide
answers to questions like: How do I check for iostreams errors? and,
How do I work with file streams?

Sections 1.7 to 1.9 explain more advanced usage of the iostreams.

Sections 1.10 to 1.13 explain how iostreams can be extended.

Section 1.14 describes the main differences between the Standard
C++ Library iostreams and traditional iostreams.

Section 1.15 describes the main differences between the Standard
C++ Library iostreams and the Rogue Wave’s implementation of
iostreams in its own Standard C++ Library. It points out features that
are specific to the Rogue Wave implementation.

The Appendix describes standardization issues that are still open at
the time of this writing and influence the content of this document.

1.1.1 Terminology

The Standard C++ Library consists mostly of class and function
templates. Abbreviations for these templates are used throughout
the User's Guide. For example, fstream stands for template <class

charT, class traits> class basic_fstream . A slightly more succinct

6 Stream Input/Output Rogue Wave Standard C++ Library

notation for a class template is also frequently used: basic_fstream

<charT, traits> .

You will also find certain contrived technical terms. For example,
file stream stands for the abstract notion of the file stream class
templates; badbit stands for the state flag ios_base::badbit .

1.1.2 Status of this document

Sections 1.2 through 1.6 are complete. The remaining sections will
be completed for the final release of the User's Guide.

1.2 The Architecture of Iostreams
This section will introduce you to iostreams: what they are, how they
work, what kinds of problems they help solve, and how they are
structured. Section 1.2.4 provides an overview of the class templates
in iostreams. If you want to skip over the software architecture of
iostreams, please go on to Section 1.3 on formatted input/output.

1.2.1 What are the Standard Iostreams?

The Standard C++ Library includes classes for text stream
input/output. Before the current ANSI/ISO standard, most C++
compilers were delivered with a class library commonly known as
the iostreams library. In this section, we refer to the C++ iostreams
library as traditional iostreams, in contrast to the standard iostreams
that are now part of the ANSI/ISO Standard C++ Library. The
standard iostreams are to some extent compatible with the
traditional iostreams, in that the overall architecture and the most
commonly used interfaces are retained. Section 1.14 describes the
incompatibilities in greater detail.

We can compare the standard iostreams not only with the
traditional C++ iostreams library, but also with the I/O support in the
Standard C Library. Many former C programmers still prefer the
input/output functions offered by the C library, often referred to as C
Stdio. Their familiarity with the C library is justification enough for
using the C Stdio instead of C++ iostreams, but there are other
reasons as well. For example, calls to the C functions printf() and
scanf() are admittedly more concise with C Stdio. However, C Stdio
has drawbacks, too, such as type insecurity and inability to extend
consistently for user-defined classes. We'll discuss these in more
detail in the following sections.

Rogue Wave Standard C++ Library Stream Input/Output 7

1.2.1.1 Type Safety

Let us compare a call to stdio functions with the use of standard
iostreams. The stdio call reads as follows:

int i = 25;
char name[50] = “Janakiraman”;
fprintf(stdout, “%d %s”, i, name);

It correctly prints: 25 Janakiraman .

But what if we inadvertently switch the arguments to fprintf ? The
error will be detected no sooner than run time. Anything can
happen, from peculiar output to a system crash. This is not the case
with the standard iostreams:

cout << i << ‘ ‘ << name << ‘\n’;

Since there are overloaded versions of the shift operator
operator<<() , the right operator will always be called. The function
cout << i calls operator<<(int) , and cout << name calls
operator<<(char*) . Hence, the standard iostreams are typesafe.

1.2.1.2 Extensibility to New Types

Another advantage of the standard iostreams is that user-defined
types can be made to fit in seamlessly. Consider a type Pair that
we want to print:

struct Pair { int x; string y; }

All we need to do is overload operator<<() for this new type Pair,

and we can output pairs this way:

Pair p(5, “May”);
cout << p;

The corresponding operator<<() can be implemented as:

basic_ostream<char>& operator<<(basic_ostream<char>& o, Pair& p)
{ return o << p.x << ‘ ‘ << p.y; }

8 Stream Input/Output Rogue Wave Standard C++ Library

1.2.2 How do the Standard Iostreams Work?

The main purpose of the standard iostreams is to serve as a tool for
input and output of texts. Generally, input and output are the
transfer of data between a program and any kind of external

device, as illustrated in the figure below:

Figure 1: Data transfer supported by iostreams

The internal representation of such data is meant to be convenient
for data processing in a program. On the other hand, the external
representation can vary quite a bit: it might be a display in human-
readable form, or a portable data exchange format. The intent of a
representation, such as conserving space for storage, can also
influence the representation.

Text I/O involves the external representation of a sequence of
characters. Every other case involves binary I/O. Traditionally,
iostreams are used for text processing. Such text processing via
iostreams involves two processes: formatting and code conversion.

Formatting is the transformation from a byte sequence representing
internal data into a human-readable character sequence; for
example, from a floating point number, or an integer value held in
a variable, into a sequence of digits. The figure below illustrates the

communication channel

file

program

display

IOStreams su pp orts data transfer between a p ro g ram and external devices.

���� ����

+HOOR?WZRUOG�?�
158 Hello world!formatting

program data human-readable external representation

Rogue Wave Standard C++ Library Stream Input/Output 9

formatting process:

Figure 2: Formatting program data

Code conversion is the process of translating one character
representation into another; for example, from wide characters held
internally to a sequence of multibyte characters for external usage.
Wide characters all have the same size, and thus are convenient for
internal data processing. Multibyte characters have different sizes
and are stored more compactly. They are typically used for data
transfer, or for storage on external devices such as files. The figure

below illustrates the conversion process:

Figure 3: Code conversion between multibytes and wide characters

1.2.2.1 The Iostream Layers

The iostreams facility has two layers: one that handles formatting,
and another that handles code conversion and transport of
characters to and from the external device. The layers
communicate via a buffer, as illustrated in the following figure:

Figure 4: The iostreams layers

Let's take a look at the function of each layer in more detail:

ext ernal file

J a p a n

internal buf fer

p a n

<ESC> $ B

JIS

Unicode

buffer
external
deviceprogram formatting & buffering

code conversion &
transport

10 Stream Input/Output Rogue Wave Standard C++ Library

• The Formatting Layer. Here the transformation between a
program’s internal data representation and a readable
representation as a character sequence takes place. This
formatting and parsing may involve, among other things:

• Precision and notation of floating point numbers;

• Hexadecimal, octal or decimal representation of integers;

• Skipping of white spaces from input;

• Field width for output;

• Adapting of number formatting to local conventions.

• The Transport Layer. This layer is responsible for producing and
consuming characters. It encapsulates knowledge about the
properties of a specific external device. Among other things, this
involves:

• Block-wise output to files via system calls;

• Code conversion to multibyte encodings.

 To reduce the number of accesses to the external device, a buffer
is used. For output, the formatting layer sends sequences of
characters to the transport layer, which stores them in a stream
buffer. The actual transport to the external device happens only
when the buffer is full. For input, the transport layer reads from
the external device and fills the buffer. The formatting layer
receives characters from the buffer. When the buffer is empty,
the transport layer is responsible for refilling it.

• Locales. Both the formatting and the transport layers use the
stream’s locale. (See section 1.9 for details about locales.) The
formatting layer delegates the handling of numeric entities to the
locale’s numeric facets. The transport layer uses the locale’s code
conversion facet for character-wise transformation between the
buffer content and characters transported to and from the
external device. The figure below shows how locales are used
with iostreams:

Rogue Wave Standard C++ Library Stream Input/Output 11

Figure 5: Usage of locales in iostreams

1.2.2.2 File and In-Memory I/O

Iostreams support two kinds of I/O: file I/O and in-memory I/O.

File I/O involves the transfer of data to and from an external device.
The device need not necessarily be a file in the usual sense of the
word. It could just as well be a communication channel, or another
construct that conforms to the file abstraction.

In contrast, in-memory I/O involves no external device. Thus code
conversion and transport are not necessary; only formatting is
performed. The result of such formatting is maintained in memory,
and can be retrieved in the form of a character string.

1.2.3 How Do the Standard Iostreams Help Solve Problems?

There are many situations in which iostreams are useful:

• File I/O. Iostreams can still be used for input and output to files,
although file I/O has lost some of the importance it used to have.
In the past, alpha-numeric user-interfaces were often built using
file input/output to the standard input and output channels.
Today almost all applications have graphical user interfaces.

 Nevertheless, iostreams are still useful for input and output to files
other than the standard input and output channels, and for input
and output to all other kinds of external media that fit into the file
abstraction. For example, the Rogue Wave class library for
network communications programming, Net.h++, uses iostreams
for input and output to various kinds of communication streams
like sockets and pipes.

• In-Memory I/O. Iostreams can perform in-memory formatting
and parsing. Even with a graphical user interface, you will
have to format the text you want to display. The standard
iostreams offer internationalized in-memory I/O, which is a great

buffer
external
device

program formatting & buffering
code conversion &

transport

locale:
numeric facets

locale:
code convers ion facet

12 Stream Input/Output Rogue Wave Standard C++ Library

help for text processing tasks like this. The formatting of numeric
values, for example, depends on cultural conventions. The
formatting layer uses a locale’s numeric facets to adapt its
formatting and parsing to cultural conventions.

• Internationalized Text Processing. Internationalized text
processing is actively supported by iostreams.

 Iostreams use locales. As locales are extensible, any kind of
facet can be carried by a locale, and thus used by a stream. By
default, iostreams use only the numeric and the code conversion
facets of a locale. However, there are date , time and monetary
facets available in the Standard C++ Library. Other cultural
dependencies can be encapsulated in unique facets and made
accessible to a stream. You can easily internationalize iostreams
to meet your needs.

• Binary I/O. The traditional iostreams used to suffer from a
number of limitations. The biggest was its lack of conversion
abilities: if you inserted a double into a stream, for example, you
did not know what format would be used to represent this double

on the external device. There was no portable way to insert it as
binary.

 Standard iostreams are by far more flexible. The code
conversion performed on transfer of internal data to external
devices can be customized: the transport layer delegates the
task of converting to a code conversion facet. To provide a
stream with a suitable code conversion facet for binary output,
you can insert a double into a file stream in a portable binary
data exchange format. No such code conversion facets are
provided by the Standard Library though, and implementing
such a facet is not trivial. As an alternative, you might consider
implementing an entire stream buffer layer that can handle
binary I/O.

• Extending Iostreams. In a way, you can think of iostreams as a
framework. There are many ways to extend and customize
iostreams. You can add input and output operators for user-
defined types. You can create your own formatting elements,
the so-called manipulators. You can specialize entire streams,
usually in conjunction with specialized stream buffers. You can
provide different locales, which represent different cultural
conventions, or contain special purpose facets. You can
instantiate iostreams classes for new character types, other than
char or wchar_t .

Rogue Wave Standard C++ Library Stream Input/Output 13

1.2.4 Internal Structure of the Iostreams Layers

As explained earlier, iostreams have two layers, one that handles
formatting, and another that is responsible for code conversion and
transport of characters to and from the external device. For
convenience, let us repeat here the illustration of the iostreams

layers, Figure 4 from Section 1.2.2:

This section will give a more detailed description of the iostreams
software architecture, including the classes and their inheritance
relationship and respective responsibilities. If you would rather start
using iostreams directly, skip this section and come back to it later,
when you are curious to learn more about the details of iostreams.

1.2.4.1 The Internal Structure of the Formatting Layer

Classes that belong to the formatting layer are often referred to as
the stream classes. The figure below illustrates the class hierarchy of
all the stream classes:

buffer
external
device

program formatting & buffering
code conversion &

transport

Figure 6. The iostreams layers

14 Stream Input/Output Rogue Wave Standard C++ Library

Figure 7: Internal class hierarchy of the formatting layer 1

1 There are additional classes strstream , istrstream and

ostrstream , which are not described in this users
guide. You can find them in the class reference
though. These classes are so-called deprecated
features in the standard, i.e. they are provided
solely for sake of compatibility with the tradition

basic_ios<charT:class,traits:class>

basic_istream<charT:class,traits:class
>

basic_ostream<charT:class,traits:class>

basic_istr ingstream
<charT:class,traits:class>

basic_ifstream
<charT:class,traits:class>

basic_ostr ingstream
<charT:class,traits:class>

basic_ofstream
<charT:class,traits:class>

ios_base

basic_iostream<charT:class,traits:class
>

basic_str ingstream
<charT:class,traits:class>

basic_fstream
<charT:class,traits:class>

Rogue Wave Standard C++ Library Stream Input/Output 15

Let us discuss in more detail the components and characteristics of
the class hierarchy given in the figure:

• The Iostreams Base Class ios_base. This class is the base class of
all stream classes. Independent of character type, it
encapsulates information that is needed by all streams. This
information includes:

• State information that reflects the integrity of the stream
buffer;

• Control information for parsing and formatting;

• Additional information for the user’s special needs (a way to
extend iostreams, as we will see later on);

• The locale imbued on the stream;

• Additionally, ios_base defines several types that are used by
all stream classes, such as format flags, status bits, open
mode, exception class, etc.

• The Iostreams Character Type-Dependent Base Class. Here is
the virtual base class for the stream classes:

 basic_ios<class charT, class traits=char_traits<charT> >

 The class holds a pointer to the stream buffer.

 Note that basic_ios<> is a class template taking two parameters,
the type of character handled by the stream, and the character
traits.

 The type of character can be type char for single-byte
characters, or type wchar_t for wide characters, or any other
user-defined character type. There are instantiations for char

and wchar_t provided by the Standard C++ Library.

 For convenience, there are typedefs for these instantiations:

 typedef basic_ios<char> ios and typedef basic_ios<wchar_t>

wios

 Also note that ios is not a class anymore, as it used to be in the
traditional iostreams. If you have existing programs that use the
old iostreams, they may no longer be compatible with the
standard iostreams. (See list of incompatibilities in section 1.14)

iostreams, but they will not be supported in future
versions of the standard iostreams.

16 Stream Input/Output Rogue Wave Standard C++ Library

• Character Traits. Character traits describe the properties of a
character type. Many things change with the character type,
such as:

• The end-of-file value. For type char, the end-of file value is
represented by an integral constant called EOF. For type
wchar_t , there is a constant defined that is called WEOF. For
an arbitrary user-defined character type, the associated
character traits define what the end-of-file value for this
particular character type is.

• The type of the EOF value. This needs to be a type that can
hold the EOF value. For example, for single-byte characters,
this type is int , different from the actual character type char .

• The equality of two characters. For an exotic user-defined
character type, the equality of two characters might mean
something different from just bit-wise equality. Here you can
define it.

 And many more...

 There are specializations defined for type char and wchar_t . In
general, this class template is not meant to be instantiated for a
character type. You should always define class template
specializations.

 Fortunately, the Standard C++ Library is designed to make the
most common cases the easiest. The traits template parameter
has a sensible default value, so usually you don't have to bother
with character traits at all.

• The Input and Output Streams. The three stream classes for
input and output are:

 basic_istream <class charT, class traits=char_traits<charT> >
basic_ostream <class charT, class traits=char_traits<charT> >
basic_iostream<class charT, class traits=char_traits<charT> >

 Class istream handles input, class ostream is for output. Class
iostream deals with input and output; such a stream is called a
bidirectional stream.

 These three classes define functions for parsing and formatting,
which are overloaded versions of operator>>() for input, called
extractors, and overloaded versions of operator<<() for output,
called inserters.

 Additionally, there are member functions for unformatted input
and output, like get() , put() , etc.

Rogue Wave Standard C++ Library Stream Input/Output 17

• The File Streams. The file stream classes support input and
output to and from files. They are:

 basic_ifstream<class charT, class traits=char_traits<charT> >
basic_ofstream<class charT, class traits=char_traits<charT> >
basic_fstream<class charT, class traits=char_traits<charT> >

 There are functions for opening and closing files, similar to the C
functions fopen() and fclose() . Internally they use a special
kind of stream buffer, called a file buffer, to control the transport
of characters to/from the associated file. The function of the file

streams is illustrated in the following figure:

Figure 8: File I/O

• The String Streams. The string stream classes support in-memory
I/O; that is, reading and writing to a string held in memory.
They are:

 basic_istringstream<class charT, class traits=char_traits<charT> >
 basic_ostringstream<class charT, class traits=char_traits<charT> >
 basic_stringstream<class charT, class traits=char_traits<charT> >

 There are functions for getting and setting the string to be used as
a buffer. Internally a specialized stream buffer is used. In this
particular case, the buffer and the external device are the same.
The figure below illustrates how the string stream classes work:

open()
c lose()

bas ic_o fs t ream
<charT:c lass , t ra i ts :c lass>

IRUPDWWLQJIRUPDWWLQJ

open()
c lose()
over f low()
under f low()

bas ic_f i lebuf
<charT:c lass , t ra i ts :c lass>

WUDQVSRUWWUDQVSRUW

external
fi le

p r o g r a m

GHVWLQDWLRQGHVWLQDWLRQ

program str()
s t r (bas ic_s t r ing<charT>&)

bas ic_ost r ingst ream
<charT:c lass, t ra i ts :c lass>

str()
s t r (bas ic_s t r ing<charT>&)
overf low()
under f low()

bas ic_st r ingbuf
<charT:c lass, t ra i ts :c lass>

IRUPDWWLQJIRUPDWWLQJ WUDQVSRUW GHVWLQDWLRQWUDQVSRUW GHVWLQDWLRQ

18 Stream Input/Output Rogue Wave Standard C++ Library

Figure 9: In-memory I/O

1.2.4.2 The Transport Layer’s Internal Structure

Classes of the transport layer are often referred to as the stream
buffer classes. Here is the class hierarchy of all stream buffer classes:

Figure 10: Hierarchy of the transport layer

The stream buffer classes are responsible for transfer of characters
from and to external devices.

• The Stream Buffer. This class represents an abstract stream
buffer:

 basic_streambuf<class charT, class traits=char_traits<charT>
>

 It does not have any knowledge about the external device.
Instead, it defines two virtual functions, overflow() and
underflow() , to perform the actual transport. These two functions
have knowledge of the peculiarities of the external device they
are connected to. They have to be overwritten by all concrete
stream buffer classes, like file and string buffers.

 The stream buffer class maintains two character sequences: the
get area, which represents the input sequence read from an
external device, and the put area, which is the output sequence
to be written to the device. There are functions for providing the
next character from the buffer, such as sgetc() , etc. They are
typically called by the formatting layer in order to receive
characters for parsing. Accordingly, there are also functions for
placing the next character into the buffer, such as sputc() , etc.

 A stream buffer also carries a locale object.

• The File Buffer. The file buffer classes associate the input and
output sequences with a file. A file buffer takes the form:

basic_streambuf
<charT:class,trai ts:c lass>

basic_str ingbuf
<charT:class,trai ts:c lass>

basic_f i lebuf
<charT:class,trai ts:c lass>

Rogue Wave Standard C++ Library Stream Input/Output 19

 basic_filebuf<class charT, class traits=char_traits<charT> >

 The file buffer has functions like open() and close() . The file
buffer class inherits a locale object from its stream buffer base
class. It uses the locale’s code conversion facet for transforming
the external character encoding to the encoding used internally.

The figure below shows how the file buffer works:

Figure 11: Character code conversion performed by the file buffer

• The String Stream Buffer. These classes implement the in-
memory I/O:

 basic_stringbuf<class charT, class traits=char_traits<charT>
>

 With string buffers, the internal buffer and the external device
are identical. The internal buffer is dynamic, in that it is
extended if necessary to hold all the characters written to it. You
can obtain copies of the internally held buffer, and you can
provide a string to be used as internal buffer.

1.2.4.3 Collaboration of Streams and Stream Buffers

The base class basic_ios<> holds a pointer to a stream buffer. The
derived stream classes, like file and string streams, contain a file or
string buffer object. The stream buffer pointer of the base class refers
to this embedded object. This operation is illustrated in the figure
below:

external f i le

buffer (wide characters)

(mult i -byte characters)

20 Stream Input/Output Rogue Wave Standard C++ Library

Figure 12: How an input file stream uses a file buffer

Stream buffers can be used independently of streams, as for
unformatted I/O, for example. However, streams always need a
stream buffer.

1.2.4.4 Collaboration of Locales and Iostreams

The base class ios_base contains a locale object. The formatting
and parsing functions defined by the derived stream classes use the
numeric facets of that locale.

bas ic_s t reambuf<charT , t ra i t s> *

basic_ios<charT, t ra i ts>

bas ic_ f i lebuf<charT, t ra i ts>

basic_ i fs t ream<charT, t ra i ts>

Rogue Wave Standard C++ Library Stream Input/Output 21

The class basic_ios<charT> holds a pointer to the stream buffer. This
stream buffer has a locale object, too, usually a copy of the same
locale object used by the functions of the stream classes. The stream
buffer’s input and output functions use the code conversion facet of
the attached locale. The figure below illustrates how the locales are

used:

Figure 13: How an input file stream uses locales

Now let's look at an example that illustrates how the facets are used
by iostreams. Here the inserter for float values uses the num_put facet:

template<class charT>
basic_ostream<charT>& basic_ostream<charT>::operator<<(float val)
{ // ...
 use_facet<num_put<charT> >(getloc())
 .put(ostreambuf_iterator<charT>(*this),*this,fill(),val);
 // ...
}

basic_streambuf<charT,traits> *

basic_ios<charT, t ra i ts>

basic_i fst ream<charT, t ra i ts>

locale

locale

ios_base

basic_f i lebuf<charT,trai ts>

22 Stream Input/Output Rogue Wave Standard C++ Library

1.3 Formatted Input/Output
This section describes the formatting facilities of iostreams. Here we
begin using the predefined streams, and see how simple input and
output are done. We will then explore in detail how parsing and
formatting can be controlled.

1.3.1 The Predefined Streams

There are eight predefined standard streams that are automatically
created and initialized at program start. These standard streams are
associated with the C standard files stdin , stdout , and stderr , as
shown in the table below:

Table 1: Predefined standard streams with their associated C
standard files

Narrow
character
stream

Wide
character
stream

Associated C
standard files

cin wcin stdin

cout wcout stdout

cerr wcerr stderr

clog wclog stderr

Like the C standard files, these streams are all by default associated
with the terminal.

The difference between clog and cerr is that clog is fully buffered,
whereas output to cerr is written to the external device after each
formatting. With a fully buffered stream, output to the actual
external device is written only when the buffer is full. Thus clog is
more efficient for redirecting output to a file, while cerr is mainly
useful for terminal I/O. Writing to the external device after every
formatting, to the terminal in the case of cerr , serves the purpose of
synchronizing output to and input from the terminal.

The standard streams are initialized in such a way that they can be
used in constructors and destructors of static objects. The exact
mechanism for this initialization is explained in Section 1.9.

1.3.2 Input and Output Operators

Now let’s try to do some simple input and output to the predefined
streams. The iostreams facility defines shift operators for formatted

Rogue Wave Standard C++ Library Stream Input/Output 23

stream input and output. The output operator is the shift operator
operator<<() , also called the inserter (defined in Section 1.2.4.1):

cout << “result: “ << x << ‘\n’;

Input is done via another shift operator operator>>() , often referred
to as extractor (also defined in Section 1.2.4.1):

cin >> x >> y;

Both operators are overloaded for all built-in types in C++, as well as
for some of the types defined in the Standard C++ Library; for
example, there are inserters and extractors for bool , char , int , long ,
float , double , string , etc. When you insert or extract a value to or
from a stream, the C++ function overload resolution chooses the
correct extractor operator, based on the value’s type. This is what
makes C++ iostreams type-safe and better than C Stdio (see Section
1.2.1.1).

It is possible to print several units in one expression. For example:

cout << “result: “ << x;

is equivalent to:

(cout.operator<<(“result: “)).operator<<(x);

This is possible because each shift operator returns a reference to the
respective stream. All shift operators for built-in types are member
functions of their respective stream class. They are defined
according to the following patterns:

template<class charT, class traits>
basic_istream<charT, traits>&
basic_istream<charT, traits>::operator>>(type& x)
{
 // read x
 return *this;
}

and:

template<class charT, class traits>
basic_ostream<charT, traits>&
basic_ostream<charT, traits>::operator<<(type x)
{
 // write x
 return *this;
}

Simple input and output of units as shown above is useful, yet not
sufficient in many cases. For example, you may want to vary the
way output is formatted, or input is parsed. Iostreams allow you to
control the formatting features of its input and output operators in
many ways. With iostreams, you can specify:

24 Stream Input/Output Rogue Wave Standard C++ Library

• The width of an output field and the adjustment of the output
within this field;

• The decimal point, because it might vary according to cultural
conventions;

• The precision and format of floating point numbers;

• Whether you want to skip white spaces when reading from an
input stream;

• Whether integral values are displayed in decimal, octal or
hexadecimal format,

and many more.

There are two mechanisms that have an impact on formatting:

• Formatting control via a stream’s format state, and

• Localization via a stream’s locale.

The stream’s format state is the main means of format control, as we
will demonstrate in the next section.

1.3.3 Format Control Using the Stream’s Format State

1.3.3.1 Format Parameters

Associated with each stream are a number of format state variables
that control the details of formatting and parsing. Format state
variables are classes inherited from a stream's base classes, either
ios_base or basic_ios<charT,traits>. There are two kinds of format
parameters:

• Parameters that can have an arbitrary value. The value is
stored as a private data member in one of the base classes, and
set and retrieved via public member functions inherited from that
base class. There are three such parameters, described in the
table below:

Table 2: Format parameters with arbitrary values

Access
function

Defined in
base class

Effect Default

width() ios_base Minimal field
width

0

precision() ios_base Precision of
floating point

6

Rogue Wave Standard C++ Library Stream Input/Output 25

values

fill() basic_ios
<charT,traits>

Fill character for
padding

the space
character

• Parameters that can have only a few different values, typically
two or three. They are represented by one or more bits in a data
member of type fmtflags in class ios_base. These are usually
called format flags. You can set format flags using the setf()

function in class ios_base. You can retrieve them via the flags()

function. You can clear them using unsetf() .

 Some format flags are grouped, because they are mutually
exclusive; for example, the adjustment of the output within an
output field. It can be adjusted to the left or to the right, or an
internally specified adjustment can be chosen. One and only
one of the corresponding three format flags, left , right , or
internal , can be set. If you want to set one of these bits to 1, you
had better set the other two to 0. To make this easier, there are
bit groups defined that are mostly used to reset all bits in one
group. The bit group for adjustment is adjustfield , defined as
left | right | internal .

The table below gives an overview of all format flags and their
effects on input and output operators. (See the Class Reference of
ios_base for details on how the format flags affect input and output
operations.) The first column below, format flag, lists the flag names;
for example, showpos stands for ios_base::showpos . The group
column lists the name of the group for flags that are mutually
exclusive. The third column gives a brief description of the effect of
setting the flag. The stdio column refers to format characters used by
the C functions scanf() or printf() that have the same or similar
effect. The last column, default, lists the setting that is used if you do
not explicitly set the flag.

Table 3: Flags and their effects on operators

Format
flag

Group Effect stdio Defaul
t

left

right

adjustfield Adds fill characters to
certain generated
output for adjustment:

 to the left

 to the right

-

0

right

26 Stream Input/Output Rogue Wave Standard C++ Library

internal adds fill characters
at
 designated internal
 point.

dec

oct

hex

basefield Converts integer input
or generates integer
output in:

 decimal base

 octal base

 hexadecimal base

%i

%d,%u

%o

%x

dec

fixed

scientific

floatfield Generates floating
point output:

 in fixed-point
notation

 in scientific notation

%g,%G

%f

%e,%E

fixed

boolalpha Inserts and extracts
bool values in
alphabetic format

0

showpos Generates a + sign in
non-negative
generated numeric
output

+ 0

showpoint Always generates a
decimal-point in
generated floating-
point output

0

showbase Generates a prefix
indicating the numeric
base of a generated
integer output

0

skipsw Skips leading white
space before certain
input operations

1

unitbuf Flushes output after
each formatting
operation

0

uppercase Replaces certain
lowercase letters with

%X 0

Rogue Wave Standard C++ Library Stream Input/Output 27

their uppercase
equivalents in
generated output

%E

%G

The effect of setting a format parameter is usually permanent; that
is, the parameter setting is in effect until the setting is explicitly
changed. The only exception to this rule is the field width. The
width is automatically reset to its default value 0 after each input or
output operation that uses the field width.2 Here is an example:

int i; char* s[11];
cin >> setw(10) >> i >> s; \\1
cout << setw(10) <<i << s; \\2

//1 Extracting an integer is independent of the specified field width.
The extractor for integers always reads as many digits as
belong to the integer. As extraction of integers does not use the
field width setting, the field width of 10 is still in effect when a
character sequence is subsequently extracted. Only 10
characters will be extracted in this case. After the extraction,
the field width is reset to 0.

//2 The inserter for integers uses the specified field width and fills
the field with padding characters if necessary. After the
insertion, it resets the field width to 0. Hence, the subsequent
insertion of the string will not fill the field with padding
characters for a string with less than 10 characters.

Please note: With the exception of the field width, all format
parameter settings are permanent. The field width parameter is
reset after each use.

The following code sample shows how you can control formatting
by using some of the parameters:

#include <iostream>
using namespace ::std;
// …
ios_base::fmtflags original_flags = cout.flags(); \\1
cout<< 812<<'|';
cout.setf(ios_base::left,ios_base::adjustfield); \\2
cout.width(10); \\3
cout<< 813 << 815 << '\n';
cout.unsetf(ios_base::adjustfield); \\4
cout.precision(2);
cout.setf(ios_base::uppercase|ios_base::scientific); \\5

2 The details of exactly when width is reset to zero are not

specified in the standard.

28 Stream Input/Output Rogue Wave Standard C++ Library

cout << 831.0 << ‘ ‘ << 8e2;
cout.flags(original_flags); \\6

//1 Store the current format flag setting, in order to restore it later on.

//2 Change the adjustment from the default setting right to left .

//3 Set the field width from its default 0 to 10. The default 0 means
that no padding characters are inserted.

//4 Clear the adjustment flags.

//5 Change the precision for floating-point values from its default 6
to 2, and set yet another couple of format flags that affect
floating-point values.

//6 Restore the original flags.

The output is:

812|813 815
8.31E+02 8.00E+02$

1.3.3.2 Manipulators

Format control requires calling a stream’s member functions. Each
such call interrupts the respective shift expression. But what if you
need to change formats within a shift expression? Indeed, this is
possible in iostreams. Instead of writing:

cout<< 812 << '|';
cout.setf(ios_base::left,ios_base::adjustfield);
cout.width(10);
cout<< 813 << 815 << '\n';

you can write:

cout<< 812 << '|' << left << setw(10) << 813 << 815 << endl;

In this example, objects like left , setw , and endl are called
manipulators. A manipulator is an object of a certain type; let us
call the type manip for the time being. There are overloaded versions
of basic_istream <charT,traits>:: operator>>() and basic_ostream

<charT,traits>:: operator<<() for type manip . Hence a manipulator
can be extracted from or inserted into a stream together with other
objects that have the shift operators defined. (Section 1.8 explains in
greater detail how manipulators work and how you can implement
your own manipulators.)

The effect of a manipulator need not be an actual input to or output
from the stream. Most manipulators set just one of the above
described format flags, or do some other kind of stream
manipulation. For example, an expression like:

cout << left;

Rogue Wave Standard C++ Library Stream Input/Output 29

is equivalent to:

cout.setf (ios_base::left, ios_base::adjustfield);.

Nothing is inserted into the stream. The only effect is that the format
flag for adjusting the output to the left is set.

On the other hand, the manipulator endl inserts the newline
character to the stream, and flushes to the underlying stream buffer.
The expression:

cout << endl;

is equivalent to:

cout << ‘\n’; cout.flush();

Some manipulators take arguments, like setw(int) . The setw

manipulator sets the field width. The expression:

cout << setw(10);

is equivalent to:

cout.width(10);

In general, you can think of a manipulator as an object you can
insert into or extract from a stream, the effect of which is some kind
of manipulation of that stream.

Some manipulators can be applied only to output streams, others
only to input streams. Most manipulators change format bits only in
one of the stream base classes, ios_base or basic_ios<charT,traits>.
These can be applied to input and output streams.

The following table gives an overview of all manipulators defined
by iostreams. The first column, manipulator, lists its name. All
manipulators are classes defined in the namespace ::std . The
second column indicates whether the manipulator is intended to be
used with istreams (i), ostreams (o), or both (io). The third column
summarizes the effect of the manipulator. The last column,
equivalent, lists the corresponding call to the stream’s member
function.

Note that the second column only indicates the intended use of a
manipulator. In many cases it is possible to apply an output
manipulator to an input stream, and vice versa. Generally, this kind
of non-intended manipulation is harmless; it does not have any
effect. For instance, if you apply the showpoint manipulator, which is
an output manipulator, to an input stream, the manipulation will
simply be ignored. However, if you manipulate a bidirectional
stream during input with an output manipulator, the manipulation

30 Stream Input/Output Rogue Wave Standard C++ Library

will have no effect on input operations, but it will have an impact on
subsequent output operations.

Table 4: Manipulators

Manipulator Effect Equivalent

flush o Flushes stream
buffer

o.flush()

endl o Inserts newline and
flushes buffer

o.put(traits::newline());

o.flush();

ends o Inserts end of string
character

o.put(traits::eos())

ws i Skips white spaces

boolalpha io Puts bool values in
alphabetic format

io.setf(ios_base::boolalpha)

noboolalpha io Resets the above io.unsetf(ios_base::boolalpha)

showbase o Generates a prefix
indicating the
numeric base of an
integer

o.setf(ios_base::showbase)

noshowbase o Resets the above o.unsetf (ios_base::showbase)

showpoint o Always generates a
decimal-point for
floating-point
values

o.setf(ios_base::showpoint)

noshowpoint o Resets the above o.unsetf (ios_base::showpoint)

showpos o Generates a + sign
for non-negative
numeric values

o.setf(ios_base::showpos)

noshowpos o Resets the above o.unsetf (ios_base::showpos)

skipws i Skips leading white
space

i.setf(ios_base::skipws)

noskipws i Resets the above i.unsetf(ios_base::skipws)

uppercase o Replaces certain
lowercase letters
with their
uppercase
equivalents

o.setf(ios_base::uppercase)

Rogue Wave Standard C++ Library Stream Input/Output 31

nouppercase Resets the above o.unsetf (ios_base::uppercase)

unitbuf o Flushes output after
each formatting
operation

o.setf(ios_base::unitbuf)

nounitbuf o Resets the above o.unsetf(ios_base::unitbuf)

internal o Adds fill characters
at designated
internal point

o.setf(ios_base::internal,
ios_base::adjustfield)

left o Adds fill characters
for adjustment to
the left

o.setf(ios_base::left,
ios_base::adjustfield)

right o Adds fill characters
for adjustment to
the right

o.setf(ios_base::right,
ios_base::adjustfield)

dec io Converts integers
to/from decimal
notation

io.setf(ios_base::dec,
ios_base::basefield)

hex io Converts integers
to/from
hexadecimal
notation

io.setf(ios_base::hex,
ios_base::basefield)

oct io Converts to/from
octal notation

io.setf(ios_base::oct,
ios_base::basefield)

fixed o Puts floating point
values in fixed-
point notation

o.setf(ios_base::fixed,
ios_base::floatfield)

scientific Puts floating point
values in scientific
notation

o.setf(ios_base::scientific,
ios_base::floatfield)

setiosflags
(ios_base::
fmtflags
mask)

io Sets ios flags io.setf(mask)

32 Stream Input/Output Rogue Wave Standard C++ Library

resetiosfla
gs
(ios_base::
fmtflags
mask)

io Clear ios flags io.setf((ios_base::fmtflags)0,
mask)

setbase
(int base)

io set base for integer
notation (base = 8,
10, 16)

io.setf (base ==
8?ios_base::oct: base == 10 ?
ios_base::dec : base == 16 ?
ios_base::hex :
ios_base::fmtflags(0),
ios_base::basefield)

setfill(cha
rT c)

io set fill character for
padding

io.fill(c)

setprecisio
n
(int n)

io set precision of
floating point
values

io.precision(n)

setw(int n) io set minimal field
width

io.width(n)

1.3.4 Localization Using the Stream’s Locale

Associated with each stream is a locale that has an impact on the
parsing and formatting of numeric values. This is how localization of
software takes place. As discussed in the section on locale, the
representation of numbers often depends on cultural conventions. In
particular, the decimal point need not be a period, as in the
following example:

cout.imbue(locale(“De_DE”));
cout << 1000000.50 << endl;

The output will be:

1000000,50

Other cultural conventions, like the grouping of digits, are irrelevant.
There is no formatting of numeric values that involves grouping.

1.3.5 Formatted Input

In principle, input and output operators behave symmetrically.
There is only one important difference: for output you control the
precise format of the inserted character sequence, while with input
the format of an extracted character sequence is never exactly
described.

This is for practical reasons. Suppose you want to extract the next
floating point value from a stream, but you do not want to

Rogue Wave Standard C++ Library Stream Input/Output 33

anticipate its exact format. You want to extract it anyway, no
matter whether it is signed or not, or in exponential notation with a
small or capital E for the exponent, etc. Hence, extractors in general
accept an item in any format that is permitted for its type.

Formatted input is done the following way:

1. Extractors automatically ignore all white spaces (blanks,
tabulators, newlines 3) that precede the item to be extracted.

2. When the first relevant character is found, they extract
characters from the input stream until they find a separator, that
is, a character that does not belong to the item. White spaces in
particular are separators.

3. The separator remains in the input stream and becomes the first
character extracted in a subsequent extraction.

Several format parameters, which control insertion, are irrelevant for
extraction. The format parameters fill character, fill() , and the
adjustment flags, left , right , and internal , have no effect on
extraction. The field width is relevant only for extraction of strings,
and ignored otherwise.

1.3.5.1 Skipping Characters

You can use the manipulator noskipsw to switch off the automatic
skipping of white spaces. Extracting the white space characters can
be necessary, for example, if you expect that the input has a certain
format, and you need to check for violations of the format
requirements. This procedure is shown in the following code:

cin >> noskipsw;
char c;
do
{ float fl;
 c = ‘ ‘; cin >> fl >> c; // extract number and separator
if (c == ‘,’ || c == ‘\n’) // next char is ‘,’ or newline ?
 process(fl); // yes: use the number
}
while (c == ‘,’);
if (c != ‘\n’) error(); // no: error!

3 The classification of a character as a white space character

depends on the character set that is used. The
extractor takes the respective information from the
locale’s ctype facet.

34 Stream Input/Output Rogue Wave Standard C++ Library

If you have to skip a sequence of characters other than white
spaces, you can use the istream’s member function ignore() . The
call:

basic_ifstream<myChar,myTraits> InputStream(“file-name”);
InputStream.ignore(numeric_limits<streamsize>::max()
 ,myChar(‘\n’));

or, for ordinary tiny characters of type char :

ifstream InputStream(“file-name”);
InputStream.ignore(INT_MAX,’\n’);

ignores all characters until the end of the line. This example uses a
file stream that is not predefined. File streams are described in
section 1.5.3.

1.3.5.2 Input of Strings

When you extract strings from an input stream, characters will be
read until:

• a white space character is found, or

• the end of the input is reached,

• or a certain number (width()-1, if width() != 0) characters are
extracted.

An end-of-string character will be added to the extracted character
sequence. Note that the field width will be reset to 0 after the
extraction of a string.

There are subtle differences between the extraction of a character
sequences into a character array or a string object, i.e.

char buf[SZ];
cin >> buf;

is different from

string s;
cin >> s;

Extraction into a string is safe, because strings automatically extend
their capacity if necessary. You can extract as many characters as
you want; the string will always adjust its size accordingly.
Character arrays, on the other hand, have a fixed size and cannot
dynamically extend their capacity. If you extract more characters
than the character array can take, then the extractor writes beyond
the end of the array. In order to prevent the extractor from doing
this, it is necessary to set the field width each time you extract
characters into a character array:

char buf[SZ];

Rogue Wave Standard C++ Library Stream Input/Output 35

cin >> width(SZ) >> buf;

1.4 Error State of Streams
It probably comes as no surprise that streams have an error state.
Our examples have avoided it, so we'll deal with it now. When an
error occurs, flags are set in the state according to the general
category of the error. Flags and their error categories are
summarized in the table below:

Table 5: Flags and corresponding error categories

iostate flag Error category

ios_base::goodbit Everything’s fine

ios_base::eofbit An input operation reached the end of an
input sequence

ios_base::failbit An input operation failed to read the
expected character, or

An output operation failed to generate the
desired characters

ios_base::badbit Indicates the loss of integrity of the
underlying input or output sequence

Note that the flag ios_base::goodbit is not really a flag; its value,
zero, indicates the absence of any error flag. It means the stream is
okay. By convention, all input and output operations have no effect
once the stream state is different from zero.

There are several situations when both eofbit and failbit are set.
However, the two have different meanings and do not always occur
in conjunction. The flag ios_base::eofbit is set on an attempt to
read past the end of the input sequence. This occurs in the following
two typical examples:

1. Assume the extraction happens character-wise. Once the last
character is read, the stream is still in good state; eofbit is not yet
set. Any subsequent extraction, however, will be an attempt to
read past the end of the input sequence. Thus, eofbit will be set.

2. If you do not read character-wise, but extract an integer or a
string, for example, you will always read past the end of the
input sequence. This is because the input operators read
characters until they find a separator, or hit the end of the input

36 Stream Input/Output Rogue Wave Standard C++ Library

sequence. Consequently, if the input contains the sequence ….

912749<eof> and an integer is extracted, eofbit will be set.

The flag ios_base::failbit is set as the result of a read (or write)
operation that fails. For example, if you try to extract an integer, but
the input sequence contains only white spaces, then the extraction
of an integer will fail, and the failbit will be set. Let's go back to
our two examples:

1. After reading the last available character, the extraction not only
reads past the end of the input sequence; it also fails to extract
the requested character. Hence, failbit will be set in addition to
eofbit .

2. Here it is different. Although the end of the input sequence will
be reached by extracting the integer, the input operation does
not fail: the desired integer will indeed be read. Hence, in this
situation only the eofbit will be set.

In addition to these input and output operations, there are other
situations that can trigger failure. For example, file streams set
failbit if the associated file cannot be opened (see section 1.5).

The flag ios_base::badbit indicates problems with the underlying
stream buffer. These problems can be:

• Memory shortage. There is no memory available to create the
buffer, or the buffer has size zero for other reasons4, or the stream
cannot allocate memory for its own internal data5, for example,
iword and pword .

• The underlying stream buffer throws an exception. The stream
buffer might lose its integrity, as in memory shortage, or when
the code conversion fails, or an unrecoverable read error from
the external device occurs. The stream buffer can indicate this
loss of integrity by throwing an exception, which will be caught
by the stream and result in setting the badbit in the stream’s
state.

4 The stream buffer can be created as the stream’s

responsibility, or the buffer can be provided from
outside the stream, so inadvertently the buffer could
have zero size.

5 The standard does not yet specify whether the inability to
allocate memory for the stream’s internal data will
result in a badbit set or a bad_alloc or
ios_failure thrown.

Rogue Wave Standard C++ Library Stream Input/Output 37

Generally, you should keep in mind that badbit indicates an error
situation that is likely to be unrecoverable, whereas failbit

indicates a situation that might allow you to retry the failed
operation. The flag eofbit just indicates that the end of the input
sequence was reached.

What can you do to check for such errors? You have two possibilities
for detecting stream errors:

• You can declare that you want to have an exception raised
once an error occurs in any input or output operation, or

• You can actively check the stream state after each input or
output operation.

We will explore these possibilities in the next two sections.

1.4.1 Checking the Stream State

Let’s first examine how you can check for errors using the stream
state. A stream has several member functions for this purpose,
which are summarized with their effects in the following table:

Table 6: Stream member functions for error checking

ios_base member function Effect

bool good() True if no error flag
is set

bool eof() True if eofbit is set

bool fail() True if failbit or
badbit is set

bool bad() True if badbit is set

bool operator!() As fail()

operator void*() 0 if fail() and 1
otherwise

iostate rdstate() Value of stream
state

It is a good idea to check the stream state in some central place, for
example:

if (!cout) error();

38 Stream Input/Output Rogue Wave Standard C++ Library

The state of cout is examined with operator!() , which will return
true if the stream state indicates an error has occurred.

An ostream can also appear in a boolean position to be tested as
follows:

if (cout << x) // okay!

The magic here is the operator void*() that returns a non-zero value
when the stream state is non-zero.

Finally, the explicit member functions can also be used:

if (cout << x, cout.good()) // okay!;

Note that the difference between good() and operator!(): good()

takes all flags into account; operator !() and fail() ignore eofbit .

1.4.2 Catching Exceptions

By default a stream does not throw any exceptions.6 You have to
explicitly activate an exception because a stream contains an
exception mask. Each flag in this mask corresponds to one of the
error flags. For example, once the badbit flag is set in the exception
mask, an exception will be thrown each time the badbit flag gets set
in the stream state. The following code demonstrates how to
activate an exception:

try {
 InStr.exceptions(ios_base::badbit | ios_base::failbit); \\1
 in >> x;
 // do lots of other stream i/o

6 This is only partly true. The standard does not yet specify

how memory allocation errors are to be handled in
iostreams. The two models basically are:

- A bad_alloc exception is thrown, regardless of whether or
not any bits in the exception mask are set.

- The streams layer catches bad_alloc exceptions thrown
during allocation of its internal resources, that is,
iword and pword. It would then set badbit or
failbit . An exception would be thrown only if the
respective bit in the exception mask asks for it. It
has to be specified whether the exception thrown in
such a case would be ios_failure or the original
bad_alloc.

Moreover, the streams layer has to catch all exceptions
thrown by the stream buffer layer. It sets badbit
and rethrows the original exception if the exception
mask permits it.

Rogue Wave Standard C++ Library Stream Input/Output 39

}
catch(ios_base::failure exc) \\2
{ cerr << exc.what() << endl;
 rethrow;
}

//1 In calling the exceptions() function, you indicate what flags in
the stream’s state shall cause an exception to be thrown.

//2 Objects thrown by the stream’s operations are of types derived
from ios_base::failure . Hence this catch clause will, in
principle, catch all stream exceptions.

Note that each change of either the stream state or the exception
mask can result in an exception thrown.

1.5 File Input/Output
The file streams allow input and output to files. Compared to the C
stdio functions for file I/O, they have the advantage of following the
idiom “Resource acquisition is initialization”7. In other words, you can
open a file on construction of a stream, and the file will be closed
automatically on destruction of the stream. Consider the following
code:

void use_file(const char* fileName)
{
 FILE* f = fopen(“fileName”, “w”);
 // use file
 fclose(f);
}

If an exception is thrown while the file is in use, the file will never be
closed. With a file stream, however, it is assured that the file will be
closed whenever the file stream goes out of scope, as in the following
example:

void use_file(const char* fileName)
{
 ofstream f(“fileName);
 // use file
}

Here the file will be closed even if an exception occurs during use of
the open file.

There are three class templates that implement file streams:
basic_ifstream <charT,traits>, basic_ofstream <charT,traits>, and
basic_fstream <charT,traits>. These templates are derived from the

7 See Bjarne Stroustrup, The C++ Programming Language,

p.308ff.

40 Stream Input/Output Rogue Wave Standard C++ Library

stream base class basic_ios <charT, traits>. Therefore, they inherit all
the functions for formatted input and output described in Section 1.3,
as well as the stream state. They also have functions for opening
and closing files, and a constructor that allows opening a file and
connecting it to the stream. For convenience, there are the regular
typedefs ifstream , ofstream, and fstream , with wifstream ,
wofstream , and wfstream for the respective tiny and wide character
file streams.

The buffering is done via a specialized stream buffer class,
basic_filebuf <charT,traits>.

1.5.1 Difference between Predefined File Streams (cin, cout,
cerr, and clog) and File Streams

The main differences between a predefined standard stream and a
file stream are:

• A file stream needs to be connected to a file before it can be
used. The predefined streams can be used right away, even in
static constructors that are executed before the main() function is
called.

• You can reposition a file stream to arbitrary file positions. This
usually does not make any sense with the predefined streams, as
they are connected to the terminal by default.

1.5.2 Code Conversion in Wide Character Streams

In a large character set environment, a file is assumed to contain
multibyte characters. To provide the contents of a such a file as a
wide character sequence for internal processing, wifstream and
wofstream perform corresponding conversions. The actual
conversion is delegated to the file buffer, which relays the task to the
imbued locale’s code conversion facet.

1.5.3 Creating File Streams

There are two ways to create a file stream8: you can create an
empty file stream, open a file, and connect it to the stream later on;

8 The traditional iostreams supported a constructor, taking a

file descriptor that allowed connection of a file
stream to an already open file. This is no longer
available in the standard iostreams. However,
Rogue Wave’s implementation of the standard

Rogue Wave Standard C++ Library Stream Input/Output 41

or you can open the file and connect it to a stream at construction
time. These two procedures are demonstrated, respectively, in the
two following examples:

ifstream file; \\1
…;
file.open(argv[1]); \\2
if (!file) // error: unable to open file for input

or:

ifstream source(“src.cpp”);...................................\\3
if (!source) // error: unable to open src.cpp for input

//1 A file stream is created that is not connected to any file. Any
operation on the file stream will fail.

//2 Here a file is opened and connected to the file stream. If the file
cannot be opened, ios_base::failbit will be set; otherwise, the
file stream is now ready for use.

//3 Here the file gets both opened and connected to the stream.

You can explicitly close the connected file. The file stream is then
empty, until it is reconnected to another file:

ifstream f; \\1
for (int i=1; i<argc; ++i)
{
 f.open(argv[i]); \\2
 if (f) \\3
 {
 process(f); \\4
 close(f); \\5
 }
 else
 cerr << “file “ << argv[i] << “ cannot be opened.\n”;
}

//1 An empty file stream is created.

//2 A file is opened and connected to the file stream.

//3 Here we check whether the file was successfully opened. If the
file could not be opened, the failbit would be set.

//4 Now the file stream is usable, and the file’s content can be read
and processed.

//5 Close the file again. The file stream is empty again.

iostreams provides an according extensions (see
section1.15.1 for reference).

42 Stream Input/Output Rogue Wave Standard C++ Library

1.5.4 The Open Mode

Sometimes a program will want to modify the way in which a file is
opened or used. For example, in some cases it is desirable that
writes append to the end of a file rather than overwriting the existing
values. The file stream constructor takes a second argument, the
open mode, which allows such variations to be specified. Here is an
example:

ofstream oStr(“out.txt”,ios_base::out|ios_base::app);

The open mode argument is of type ios_base::openmode , which is a
bitmask type like the format flags and the stream state. The
following bits are defined:

Table 7: Flag names and effects

Flag Names Effects

ios_base::in Open file for reading

ios_base::out Open file for writing

ios_base::ate Start position is at file end

ios_base::app Append file, i.e., start writing at file
end

ios_base::trunc Truncate file, i.e., delete file content

ios_base::binar
y

Binary mode

Each file maintains a file position that indicates the position in the file
where the next byte will be read or written. When a file is opened,
the initial file position is usually at the beginning of the file. The
open modes ate (= at end) and app (= append) change this default
to the end of the file.

There is a subtle difference between ate and app mode. If the file is
opened in append mode, all output to the file will be done at the
current end of the file, regardless of intervening repositioning. Even
if you modify the file position to a position before the file’s end, you
cannot write there. With at-end mode, you can navigate to a
position before the end of file and write to it.

If you open an already existing file for writing, you usually want to
overwrite the content of the output file. The open mode trunc (=
truncate) has the effect of discarding the file content, in which case
the initial file length is set to zero. Therefore, if you want to replace
an output file’s content rather than extend the file, you have to open

Rogue Wave Standard C++ Library Stream Input/Output 43

the file ineither the out or out|trunc mode; open mode out alone
will not suffice. Note that in this release a bug prevents you from
opening it in out mode alone. The file position will be at the
beginning of the file in this case, which is exactly what you expect
for overwriting an output file.

If you want to extend an output file, you open it in at-end or append
mode. In this case, the file content is retained because the trunc flag
is not set, and the initial file position is at the file’s end. However, you
may additionally set the trunc flag; the file content will be discarded
and the output will be done at the end of an empty file.

Input mode only works for file that already exist. Otherwise, the
stream construction will fail, as indicated by failbit set in the
stream state. Files that are opened for writing will be created if they
do not yet exist. The constructor only fails if the file cannot be
created.

The binary open mode is explained in section 1.5.5.

The effect of combining these open modes is similar to the mode
argument of the C library function fopen(name,mode) . The following
table gives an overview of the most frequently used combinations of
open modes for text files and their counterparts in C stdio:

Table 8: Open modes and their C stdio counterparts

Open Mode C stdio
Equivalent

Effect

in “r” Open text file for reading only

out|trunc “w” Truncate to zero length, if existent, or
create text file for writing only

out|app “a” Append; open or create text file only for
writing at end of file

in|out “r+” Open text file for update (reading and
writing)

in|out|trunc “w+” Truncate to zero length, if existent, or
create text file for update

in|out|app “a+” Append; open or create text file for
update, writing at end of file

The default open modes are listed below. Note that abbreviations
are used, e.g., ifstream stands for basic_ifstream<charT,traits> .

44 Stream Input/Output Rogue Wave Standard C++ Library

Table 9: Default open modes

File
Stream

Default Open
Mode

ifstream in

ofstream out|trunc

fstream in|out|trunc

1.5.5 Binary and Text Mode

The representation of text files varies among operating systems. For
example, the end of a line in an UNIX environment is represented
by the linefeed character ‘\n’ . On PC-based systems, the end of the
line consists of two characters, carriage return ‘\r’ and linefeed
‘\n’ . The end of the file differs as well on these two operating
systems. Peculiarities on other operating systems are also
conceivable.

To make programs more portable among operating systems, an
automatic conversion can be done on input and output. The
carriage return / linefeed sequence, for example, can be converted
to a single ‘\n’ character on input; the ‘\n’ can be expanded to
“\r\n” on output. This conversion mode is called text mode, as
opposed to binary mode.. In binary mode, no such conversions are
performed.

The mode flag ios_base::binary has the effect of opening a file in
binary mode to be used for reading text files. In this case, the
automatic conversion will be suppressed; however, it must be set for
reading binary files.

The effect of the binary open mode is frequently misunderstood. It
does not put the inserters and extractors into a binary mode, and
hence suppress the formatting they usually perform. Binary input
and output is done solely by basic_istream <charT> ::read() and
basic_ostream <charT> ::write() .

1.5.6 File Positioning

1.6 In-Memory Input/Output
Iostreams supports not only input and output to external devices like
files. It also allows in-memory parsing and formatting. Source and
sink of the characters read or written becomes a string held
somewhere in memory. You use in-memory I/O if the information to

Rogue Wave Standard C++ Library Stream Input/Output 45

be read is already available in the form of a string, or if the
formatted result will be processed as a string. For example, to
interpret the contents of the string argv[1] as an integer value, the
code might look like this:

int i;
if (istringstream(argv[1]) >> i) \\1
 // use the value of i

//1 The argument of the input string stream constructor is a string.
Here the character array argv[1] is implicitly converted to a
string, and the integer value extracted from the string argv[1] .

The inverse operation, taking a value and converting it to characters
that are stored in a string, might look like this:

struct date {
 int day,month,year;
} today = {8,4,1996};
ostringstream ostr; \\1
ostr << today.month << '-' << today.day <<'-' << today.year; \\2
if (ostr)
 display(ostr.str()); \\3

//1 An output string stream is allocated.

//2 Values are inserted into the output string stream. Remember
that the manipulator ends inserts an end-of-string.

//3 The result of the formatting can be retrieved in the form of a
string, which is returned by str() .

As with file streams, there are three class templates that implement
string streams: basic_istringstream <charT,traits>, basic_ostringstream
<charT,traits>, and basic_stringstream <charT,traits>. They are
derived from the stream base classes basic_istream <charT, traits>
and basic_ostream <charT, traits>. Therefore, they inherit all the
functions for formatted input and output described in Section 1.3, as
well as the stream state. They also have functions for setting and
retrieving the string that serves as source or sink, and constructors
that allow you to set the string before construction time. For
convenience, there are the regular typedefs istringstream ,
ostringstream , and stringstream, with wistringstream ,
wostringstream , and wstringstream for the respective tiny and wide
character string streams.

The buffering is done via a specialized stream buffer class,
basic_stringbuf <charT,traits>.

46 Stream Input/Output Rogue Wave Standard C++ Library

1.6.1 The Internal Buffer

String streams can take a string, provided either as an argument to
the constructor, or set later on via the str(const

basic_string<charT>&) function. This string is copied into an internal
buffer, and serves as source or sink of characters to subsequent
insertions or extractions. Each time the string is retrieved via the
str() function, a copy of the internal buffer is created and returned.
9

Output string streams are dynamic.10 The internal buffer is allocated
once an output string stream is constructed. The buffer is
automatically extended during insertion each time the internal
buffer is full.

Input string streams are always static. You can extract as many
items as are available in the string you provided the string stream
with.

1.6.2 The Open Modes

The only open modes that have an effect on string streams are in ,
out , ate , and app . They have more or less the same meaning that
they have with file streams (see section 1.5.4). The only difference
for ate and app is that they write at the end-of-string, instead of the
end-of-file; that is, they overwrite the end-of-string character.

The binary open mode is irrelevant, because there is no conversion
to and from the dependent file format of the operating system. The
trunc open mode is simply ignored.

9 Note that you cannot provide or retrieve strings of any

other string type than basic_string<charT>,
where charT is the character type that was used to
instantiate the string stream itself. The string
template class with 3 template parameters is:
basic_string <charT, traits, Allocator> .
Strings with traits or an allocator that are different
from the default traits or allocator cannot be used
with string streams. At this printing, this is still an
open issues in iostreams.

10 This was different in the old iostreams, where you could
have dynamic and static output streams. See
section 1.14.4 for further details.

Rogue Wave Standard C++ Library Stream Input/Output 47

1.7 Input/Output of User-Defined Types

1.8 Manipulators

1.9 Locales
1. attaching locales

1.10 Extending Streams
1. xalloc & pword

2. derivation of new stream classes

3. initialization of statics, i.e. the predefined streams

1.11 Stream Buffers
1. class streambuf - the sequence abstraction

2. deriving new stream buffer classes

3. connecting iostream and streambuf objects

1.12 Defining A Code Conversion Facet
1. requirements imposed on the code conversion facet by the

stream buffer

2. defining a tiny character code conversion facet (ASCII <->
EBCDIC)

3. defining a wide character code conversion (JIS <-> Unicode)

1.13 User-Defined Character Types
1. defining the right traits

1.14 Differences from the Traditional Iostreams11

The standard iostreams differs substantially from the traditional
iostreams. This section briefly describes the main differences.

11This is a preliminary release of the users guide. The list in

this section is not meant to be complete.

48 Stream Input/Output Rogue Wave Standard C++ Library

1.14.1 The Character Type

You may already have used iostreams in the past— the traditional
iostreams. The iostreams included in the Standard C++ Library are
mostly compatible, yet slightly different from what you know. The
most apparent change is that the new iostream classes are
templates, taking the type of character as a template parameter.

The traditional iostreams were of limited use: they could handle
only byte streams, i.e., read files byte per byte, and work internally
with a buffer of bytes. They had problems with languages that
have alphabets containing thousands of characters. These are
encoded as multibytes for storage on external devices like files, and
represented as wide characters internally. They require a code
conversion with each input and output.

The new templatized iostreams can handle this. They can be
instantiated for one-byte skinny characters of type char , and for
wide characters of type wchar_t . You can even instantiate iostream
classes for any user-defined character type. Section 1.13 describes in
detail how this can be done.

1.14.2 Internationalization

Another new feature is the internationalization of iostreams. The
traditional iostreams were incapable of adjusting themselves to local
conventions. Output of numerical items was always done following
the US English conventions for number formatting. The new
iostreams are internationalized. They use the standard locales
described in the section on locales.

1.14.3 File Streams

1.14.3.1 Connecting Files and Streams

The traditional iostreams supported a file stream constructor, taking
a file descriptor that allowed connection of a file stream to an
already open file. This is no longer available in the Standard
iostreams.

The functions attach() and detach() do not exist anymore.

1.14.3.2 Open Modes

In the traditional iostreams, if you open a file for writing only, i.e.,
open mode is out , then the initial file length will be set to zero. In
other words, the file’s content will be lost. If you open the file in at-

Rogue Wave Standard C++ Library Stream Input/Output 49

end or append mode, the file content will be retained, and you will
extend the file rather than overwriting it.

The truncate open mode has the effect of discarding the file content.
This behavior is implied when a file is opened for writing only, i.e.,
open mode out is equivalent to out|trunc .

1.14.3.3 The File Buffer

Due to changes in the iostream architecture, the file buffer is now
contained as a data member in the file stream classes. In some old
implementations, the buffer was inherited from a base class called
fstreambase .

The old file streams had a destructor; the new file streams don’t need
one. Flushing the buffer and closing the file is now done by the file
buffer’s destructor.

1.14.4 String Streams

Output string streams are always dynamic. The str() function does
not have the functionality of freezing the string stream anymore.
Instead, the string provided via str() is copied into the internal
buffer; it is not used as the internal buffer. Accordingly, the string
returned via str() is always a copy of the internal buffer.

If you need to influence a string stream’s internal buffering, you
have to do it via pubsetbuf() .

The classes strstream , istrstream , ostrstream and strstreambuf are
deprecated features in the standard iostreams, i.e. the are still
provided by this implementation of the standard iostream and will
be omitted in the future.

1.15 Differences from the Standard IOStreams
This section describes differences from the ISO/ANSI standard C++
library specification. Whenever you use one of the features described
in this section you should keep in mind that this usage will impair
the portability of your program. It will not conform to the standard.

1.15.1 Extensions

Rogue Wave’s implementation of the standard iostreams has several
extensions

1.15.1.1 File Descriptors

50 Stream Input/Output Rogue Wave Standard C++ Library

The traditional iostreams allowed to connect a file stream to a file
using a file descriptor. File descriptors are used by functions like
open() , close() , read() and write(), that are part of most C libraries,
especially on Unix based platforms. However, the ISO/ANSI
standard for the programming language C and its library does not
include these functions, nor does it mention file descriptors. In this
sense the use of file descriptors introduces platform and operating
system dependencies into your program. This exactly is the reason
why the standard iostreams does not use file descriptors.

However, you might already have programs that use the file
descriptor features of the traditional iostreams. You might as well
need to access system specific files like pipes, which are only
accessible via file descriptors. In order to address these concerns,
Rogue Wave’s implementation offers additional constructors and
member functions in the file stream and file buffer classes that
enable you to work with file descriptors.

The main additions are:

• There are constructors that take a file descriptor rather than a file
name.

• Several constructors and the open() member functions have an
additional third parameter that allows to specify the file access
rights, which is not possible with the standard interface. This
parameter has a default, so that you usually need not care
about the file protection.

1.15.2 Restrictions

Rogue Wave’s implementation of the standard iostreams has several
restrictions, most of which are due to current compilers’ limited
capabilities of handling standard C++.

• Member Templates

• Explicit Template Argument Specification (use_facet, has_facet in
locale)

1.15.3 Deprecated Features

• the strstream classes

Appendix:
Open Issues in the Standard

1. setbuf() is a virtual function that is overwritten in filebuf and
stringbuf. Neither of them is specified.

2. The memory allocation strategy of operator<<() for strings is not
specified.

3. The behavior of pubsetbuf(buf,size) in the case of a NULL buffer
is not specified.

4. It is not specified whether streams throw exceptions in case of
memory shortage. For example, if the allocation of memory for
iword and pword fails, will an exception be thrown? Which
exception will be thrown: bad_alloc or ios_failure ? Which bit
will be set: badbit or failbit ?

5. String streams only take basic_string<charT> ,where charT is the
string stream’s character type. You cannot provide or retrieve
strings that have traits or an allocator default from the default
traits or default allocator for strings.

