
DIGITAL COBOL
Multiplatform Overview & Compatibility Guide
Part Number: AA–RD7XA–TK

September 1998

This book explains the close relationships among the DIGITAL COBOL family members on all supported
platforms, and provides information that can help you plan for the migration to the Alpha platform.

Revision/Update Information: This is a new document.

Operating Systems: DIGITAL UNIX

OpenVMS Alpha

OpenVMS VAX

Windows NT Alpha

Digital Equipment Corporation makes no representations that the use of its products in the manner
described in this publication will not infringe on existing or future patent rights, nor do the descriptions
contained in this publication imply the granting of licenses to make, use, or sell equipment or software in
accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only pursuant to a valid written
license from Digital or an authorized sublicensor.

© Digital Equipment Corporation 1998. All rights reserved. Printed in U.S.A

The following are trademarks of DIGITAL, a Compaq Company: Bookreader,CMS, DIGITAL,DIGITAL Ada,
DIGITAL COBOL, DIGITAL Fortran, DIGITAL FUSE, DIGITAL OSF/1, DIGITAL PASCAL, DIGITAL
Ladebug, OpenVMS, PDP, VAX, VAX COBOL, VAX RMS, VMS, and the DIGITAL logo.

The following are third-party trademarks:

Acrobat® Reader Copyright© 1987-1998 Adobe Systems Incorporated. All rights reserved. Adobe
and Acrobat are trademarks of Adobe Systems Incorporated which may be registered in certain
jurisdictions.

Micro Focus is a registered trademark of Micro Focus Limited.

Microsoft, MS, MS–DOS, and WinDbg are registered trademarks, and Visual Basic, Windows,
and Windows NT are trademarks of Microsoft Corporation.

Oracle Rdb, Oracle CODASYL DBMS, Oracle CDD/Repository, Oracle CDD/Administrator, Oracle
RALLY, Oracle TRACE, Oracle Expert, Oracle InstantSQL, Oracle Graphical Schema Editor,
Oracle RMU, Oracle RMUwin, Oracle TRACE Collector, Oracle SQL/Services, Oracle DBA
Workcenter, and Oracle Module Language are trademarks of Oracle Corporation.

INFORMIX is a registered trademark of Informix Software, Inc.

OSF/1 and Motif are registered trademarks of the Open Software Foundation, Inc.

Sector 7 and Sector 7 ISAM are registered trademarks of Sector7 U.S.A. Inc.

Transarc and Encina are registered trademarks of Transarc Corporation.

UNIX is a registered trademark in the United States and other countries licensed exclusively
through X/Open Company Ltd.

X/Open and the ‘‘X’’ device are registered trademarks of X/Open Company Ltd. in the United
Kingdom and other countries.

All other trademarks and registered trademarks are the property of their respective holders.

Contents

Preface

Who Should Read This Book . vii
Conventions . viii
Acknowledgment . ix

1 Why You Need This Book...

Reassurance . 1-1
Support . 1-2
Accessibility . 1-3
Migration and Compatibility . 1-3

2 ...And Why We Wrote This Book

DIGITAL COBOL: Continuous Progress, and Stability . 2-1
Computing Styles and Working Styles . 2-2

From Timeshare to Interactive . 2-2
Client-Server . 2-2
...And Beyond . 2-3
The Year 2000—Are Your Programs Ready? . 2-3

About Goals . 2-4
One Picture=How Many Words? . 2-4

Our High Standards . 2-5
Your Valuable Data . 2-6
Your Valuable Users . 2-7
Extensions . 2-8
Tools—More Power for your Programming . 2-9
Options . 2-10

Resources . 2-11
The Final "Why" . 2-12

3 Our DIGITAL COBOL Genealogy

First, a Quick History of COBOL . 3-1
Our Family History . 3-3
DIGITAL VAX COBOL . 3-4

Development . 3-4
The Product. 3-4

DIGITAL COBOL . 3-6
Development . 3-6
The Product. 3-6

Migration—What’s Involved? . 3-7
Migration from VAX to Alpha . 3-7
Migration between Our Operating Systems . 3-8
Migration from Other Vendors . 3-9
Where Do We Go from Here? . 3-9

4 Developing, Debugging, and Maintaining COBOL Programs

OpenVMS Features: DIGITAL COBOL on VAX and Alpha 4-1
Language-Sensitive Editor (LSE). 4-1
Source Code Analyzer (SCA). 4-2
Debugger. 4-2
Code Management System (CMS) . 4-2
Performance and Coverage Analyzer (PCA) . 4-3
Record Management Services (RMS) . 4-3
System Services . 4-3
Oracle CDD/Repository . 4-3
Oracle DBMS . 4-4
Online Documentation . 4-4

DIGITAL COBOL for DIGITAL UNIX . 4-4
FUSE. 4-4
Ladebug . 4-5
Online Documentation . 4-5

DIGITAL COBOL for Windows NT Alpha . 4-6

Interactive Compiler Driver (ICD) . 4-6
WinDbg. 4-8
Microsoft Developer Studio Debugger. 4-9
CMS Client for Windows NT. 4-9
Online Documentation . 4-9

5 Compiling, Linking, and Running

Command Sequence and Format . 5-1
Simple Compile-Link-Run Commands . 5-1
Compile-Link-Run on OpenVMS VAX. 5-2
Compile-Link-Run on OpenVMS Alpha . 5-2
Compile-Link-Run on DIGITAL UNIX. 5-2
Compile-Link-Run on Windows NT Alpha . 5-2

6 Modifying the COBOL Command

Qualifiers, Flags, Options... 6-1

7 Useful Summaries and Tables

Cross-Platform Compatibility . 7-1
COB$SWITCHES, cob_switches . 7-4

Setting Switches Inside Your Program. 7-4
Setting Switches Outside Your Program . 7-5
Four-Platform Example to Evaluates Switches . 7-7

Intrinsic Functions . 7-8
I/O Statements . 7-11
File Status Values . 7-13
Character Codes 7-15
Related Documentation . 7-21

Documentation Sets . 7-21
Corresponding with Us . 7-21

Documentation Comments . 7-21
Online Services . 7-21
How to Order Additional Documentation . 7-22

Index

Preface

Who Should Read This Book

Engineers and Engineering Managers who are familiar with COBOL and are involved
in the decision process of migrating or maintaining enterprise software should be
familiar with this book. Programmers directly involved in the maintenance and
migration of COBOL applications will use this book as an adjunct to the Reference
Manual and User Manual.

Whether you are maintaining applications, developing new programs, or migrating
software between DIGITAL platforms, you will find valuable reference material and
techniques here.

This book is a companion to the documentation sets for all four members of the
DIGITAL COBOL family:

• DIGITAL VAX COBOL (formerly called VAX COBOL)

• DIGITAL COBOL for OpenVMS Alpha (formerly called DEC COBOL)

• DIGITAL COBOL for DIGITAL UNIX (formerly called DEC COBOL)

• DIGITAL COBOL for Windows NT Alpha

This book is organized as follows:

Chapter Description

One – Why You Need This Book... Explains what benefits you can derive from using this
book

Two –...And Why We Wrote This Book Briefly describes the family of COBOL compilers from
Digital Equipment Corporation

Three – Our DIGITAL COBOL
Genealogy

Outlines the significant features of each member of our
DIGITAL COBOL family.

Conventions

We use the following conventions in this book:

Four – Developing, Debugging, and
Maintaining COBOL Programs

Outlines the similarities—and distinctive differences—in
the actual steps and typical tools used to manipulate
COBOL code across its life cycle on four platforms.

Five – Compiling, Linking, and
Running

Compares the commands for program builds for all
DIGITAL COBOL platforms.

Six – Modifying the COBOL Command Tables showing the qualifiers, options, and flags you can
apply as modifiers to the compile command line on all
DIGITAL COBOL platforms.

Seven – Useful Summaries and TablesThis chapter concentrates helpful information into one
handy location.

Convention Description

Special Type This special type in examples indicates system output in interactive
examples.

Boldface, Red Boldface or red type in examples indicates user input in interactive
examples.

<Return> Indicates that you should press the Return key in interactive
examples.

[optional-item] Square brackets in syntax denote that the enclosed item is optional.

{mandatory-item} Braces in syntax denote that the enclosed item must be provided.

... An ellipsis shows where a syntax item can be repeated zero or more
times.

/LIS[=filespec] On the command line, the italicized portion of a syntax structure
(filespec in this example) represents substituted user input. In this
case, you would type an actual file specification (=mylisting.txt, for
example) in place of filespec.

http://www.digital.com,

Why You Need This Book...

When viewed online, blue cross-references are hot links to World
Wide Web URLs or specific locations in this book.

Chapter Description

http://www.digital.com

Acknowledgment

The authors and copyright holders of the copyrighted material used in our DIGITAL
COBOL documentation are as follows: FLOW-MATIC (trademark of Unisys
Corporation), Programming for the UNIVAC ® I and II, Data Automation Systems,
copyrighted 1958, 1959, by Unisys Corporation; IBM Commercial Translator Form
No. F28-8013, copyrighted 1959 by IBM; FACT, DSI 27A5260-2760, copyrighted
1960 by Minneapolis-Honeywell.

Chapter 1

Why You Need This Book...

Reassurance

If you are a COBOL user
who is contemplating a
hardware upgrade, and you
are (naturally) apprehensive
about the cost of rewriting
your software for the new
system, we believe there is
information in this book that
can reassure you.

This book provides you
with descriptions of the
close compatibility you will
find within our DIGITAL
COBOL product family.

For example, Chapter 2 shows the
standard and extended features across
platforms; Chapter 4 discusses the
development environments on the
various systems; Chapter 5 shows the
similarity between build procedures,
and Chapter 6 provides compile-
command modifiers for all the
platforms. Chapter 7 provides
summary information such as file I/O,
functions, environment control, and
more.

Bear in mind that the most complete
resource for all this information is the
full documentation set. For example,

language extensions are integrated with the syntax diagrams in Chapter 6 of the
DIGITAL COBOL Reference Manual, and compatibility details are in the User
Manual.

Support

If you are a DIGITAL VAX COBOL user, you will find information in this book that
can help you migrate your COBOL applications to the Alpha platform. While your
ultimate source of information is the detailed DIGITAL COBOL technical manuals,
we have brought some key information here for you.

Compatibility information, upgrade information, comparison of commands and
features... We’ve included these here and in our documentation set not only to
convince you that migrating to Alpha is easier than you might believe, but also to
provide you with information to make the decision to make the move. Plus, you can
contract for DIGITAL’s technical support network to help you over any rough spots
you might encounter.

Access ibi lity

You know you’ve seen the EBCDIC code for the bell character somewhere, but where
was that? Try the Character Codes section in the Useful Summaries and Tables chapter
of this book.

Your build procedures make use of DIGITAL VAX COBOL command qualifi ers—
so how do you modify the compile command on Alpha? Chapter 6, Modifying the
COBOL Command provides the command modif iers for all four platforms covered by
this book.

This guide provides a single source for valuable quick-reference programming
information. And, if you’re reading this book online, that next piece of information is
only a mouse click away.

Migration and Co mpatibi lity

With DIGITAL COBOL, migrating between VAX, Alpha, and other vendors’
COBOL isn’t just a vision of the future, it’ s an opportunity that exists for you now.
While some parts of your applications may perform differently across platforms, the
basic logic of your appli cations will migrate more easily than you might have thought
possible, because of the similarity of the COBOL compilers from DIGITAL . (See
Chapter 6, Modifying the COBOL Command, for proof.)

We’ve brought a kernel of migration and porting information into this book to peak
your attention. You’l l find this in Migration—What’s Involved? in Chapter 3. We’ve
also included additional information in the Cross-Platform Compatibil ity table in
Chapter 7, that vividly shows a list of COBOL features that are important to you, along
with the compatibility of each feature across the platforms.

The broadest field of information that will help you migrate to Alpha wil l be found in
the DIGITAL COBOL technical manuals, specif ically in DIGITAL VAX COBOL and
DIGITAL COBOL Compatibility and Migration, Appendix B of the User Manual .

Chapter 2

...And Why We Wrote This Book

DIGITAL COBOL: Continuous Progress, and Stability

Hundreds of millions of lines of COBOL code currently exist in our world,
representing an untold number of applications. These have been written by customers
who need the advantages provided by our COBOL compilers.

Computer technology is a constantly evolving, dynamic environment, matching the
dynamics of the needs of computer users. Legacy COBOL applications were written
around the computer system architecture and user scenarios that were then prevalent.
Mainframe computers and minicomputers sat on raised computer floors out of the view
of office staff. Desktop and point-of-sales devices consisted of data terminals with

minimal storage and no onboard intelligence. Tomorrow’s demands call for multiple
desktop systems running graphical user interfaces (GUIs) to enterprise-wide software
accessing a centralized information bank.

Computing Styles and Working Styles

From Timeshare to Interactive

Computing style and work style have evolved considerably. Instead of time-share
terminals hardwired to central computing systems, intelligent workstations now
network with enterprise computers by cable, RF data link, and orbiting satellite,.

Instead of rudimentary on-screen forms, users now have smart interactive windows. In
many cases the workstations are running complex, sophisticated client applications
that do much processing before ever communicating with central data servers. Two-
tier and three-tier client/server software is now becoming commonplace.

Client-Server

In one possible two-tier client/server application, DIGITAL COBOL client code might
exist on a system running Windows NT Alpha. A GUI written in one of the graphics-
rich visual languages might then use middleware to access a data file on a large system,
through DIGITAL COBOL software running on an OpenVMS (VAX or Alpha)
server.

In three-tier client/server programming, the first tier might include a desktop system
running a client program that has either a GUI or a more traditional user interface
written in DIGITAL COBOL for Windows NT Alpha. The second-tier client program
uses middleware to access a back-room DIGITAL COBOL server running OpenVMS
Alpha. The server accesses the third tier, a large, enterprise-wide database that is
running on a central computer complex, perhaps many miles away, and produces the
desired result.

...And Beyond

Digital Equipment Corporation has been meeting the needs of commerce for decades,
through the evolution of the hardware and software as well as the proliferation of uses
for computers. DIGITAL was there in the beginning with PDP-11 COBOL, and today
we are in the forefront of the technology wave with high-performance compilers that
run on the most popular, most efficient, most powerful, and most effective systems
available.

What’s more, we are hard at work on
advanced compiler technology to meet and
anticipate our customers’ COBOL needs of
tomorrow.

The Year 2000—Are Your Programs Ready?

It’s important to note that the ultimate
responsibility for ensuring that your
programs will correctly deal with dates is
firmly in your hands. To help you address
this issue, DIGITAL has included several
features in DIGITAL COBOL:

• Informational messages at compile time (when 2-digit year ACCEPT date coding
is encountered during compile)

• 4-digit year ACCEPT FROM DATE

• 4-digit year ACCEPT FROM DAY

• 4-digit year functions: CURRENT-DATE, DATE/DAY-OF-INTEGER,
INTEGER-OF-DATE/DAY, WHEN-COMPILED

There is additional information in the user manual for your platform. In addition, the
Year 2000 (sometimes called Y2K) program at DIGITAL is extensive, including third
party tools and the Year 2000 web site that is only a mouse click away, at:
http://ww1.digital.com/year2000/e_home.html.

http://ww1.digital.com/year2000/e_home.html
http://ww1.digital.com/year2000/e_home.html

About Goals

The DIGITAL COBOL family meets a number of your needs and goals:

• Application migration

• Superior reliability

• Excellent run-time performance

• Integration with base system debuggers and tools such as LSE, DECset, and
FUSE; the VMS Debugger, Ladebug, and WINDBG

• Integration with ISAM packages such as DIGITAL RMS, Informix, and Sector 7

• Integration with database and transaction environments such as Oracle
CDD/Repository, DBMS, ACMS, and Encina

• Extensions for compatibility with X/Open and implementations from other
COBOL vendors

The goal of our products is to provide industry-standard COBOL support—and
beyond—for OpenVMS, DIGITAL UNIX, and Windows NT Alpha systems.

One Picture=How Many Words?

On the next pages of this chapter you will find drawings that pack a great deal of
information into a small space. These drawings show many of the standard and
extended features of DIGITAL COBOL. They dramatically depict the specific
platforms on which the indicated features are available to help you meet your goals.

In general, each drawing shows an area where we at DIGITAL have something
important to offer you, our COBOL customer. This might be adherence to standards,
for example, or sophisticated screen handling. We distinguish, by way of cutouts or
coverage, the platforms on which these features are available. These drawings can be
your window to seeing your potential use of the whole DIGITAL COBOL product, to
increase both your productivity and your profitability.

The specific details of the various items (standards; file handling; screen handling;
language extensions; tools; compiler options; and information resources) are
extensively covered in the user manual and reference manual for the respective
platforms.

Our High Standards

DIGITAL COBOL is fully validated at the high level on all platforms addressed in this
book. It is based on the ANSI-85 COBOL Standard with ANSI-89 addenda. On Alpha,
DIGITAL COBOL also contains appropriate subsets of the extensions specified by
external standards. For example, X/Open file sharing and record locking, screen
handling, and IEEE floating point handling.

DIGITAL COBOL provides powerful extensions above and beyond the functionality
in ISO/ANSI standards. When you combine these complementary extensions and
standards you have extensive capabilities that you can migrate across our platforms...
and take to the bank. The many similarities across all platforms bring power to your
programs, and the differences are few and completely manageable. The details of these
differences are documented in DIGITAL VAX COBOL and DIGITAL COBOL
Compatibility and Migration, Appendix B of the DIGITAL COBOL User Manual.

Your Valuable Data

Efficient file handling is vital to your programs and to your data assets. Whether you
are migrating your applications from VAX to Alpha or from another vendor’s COBOL
to DIGITAL COBOL, we have your needs covered. The essential functions related to
file sharing and record locking provide shared access to your enterprise data on all
platforms. The extended functions provided in X/Open file handling are available on
Alpha, and we have tested third-party tools that provide ISAM support on DIGITAL
UNIX (Informix C-ISAM) andWindows NT Alpha (Sector 7 ISAM).

Efficient file handling, the heart of COBOL, is well supported across our four
platforms. (Refer to I/O Statements in the Useful Summaries and Tables chapter.)

Your Valuable Users

DIGITAL COBOL naturally supports screen handling features that let your users
access gateways to your enterprise data. Beyond standard terminal I/O, DIGITAL
COBOL extensions let you use ACCEPT and DISPLAYstatements to control the
position (line and column) and presentation (for example, using bold and blink) of
prompts and displayed data on four platforms, and X/Open SCREEN SECTION on
our three Alpha systems.

DIGITAL COBOL programs also integrate well with tools such as DECforms for your
screen forms applications. Plus, you have a built-in subset of DEC Forms capability on
Alpha; screen extensions allow you to use COBOL procedures to directly create forms
on screen (and clear the screen) for user interaction. Your applications can "walk the
fields" and collect data for later processing.

Extensions

Our DIGITAL VAX COBOL users know that we’ve burst the seams of the standards
envelope with such features as language verbs for DBMS, RMS coupling, and data
repository links. These features are also there on Alpha. If you’ve been accessing
indexed files with RMS, you can use third-party ISAM tools (which we have tested)
on DIGITAL UNIX and Windows NT Alpha. CALL BY reference and CALL BY
content is standard; we also give you CALL BY descriptor on OpenVMS, and CALL
BY value on all platforms. We provide floating point and data alignment extensions.
Extension such as these are documented in Chapter 6 of the Reference Manual.

Have you used shared objects on UNIX and shared images on OpenVMS? You’ll find
that creating a DLL on Windows NT Alpha gives you the same flexibility and memory
advantages. And, our floating point and data alignment extensions provide you with
powerful capabilities. Large files? We’ve tested with files >40Gb.

Tools—More Power for your Programming

In addition to our own direct feature support, we work closely with partners outside of
DIGITAL to provide tools that ensure both compatibility and added value. ISAM and
our own RMS give you broad file access powers on all platforms. Editors and
debuggers make your development more efficient. Your source library and build
functions, via CMS and MMS on OpenVMS, are available on Windows NT Alpha
with the CMS Client (element fetch and replace) and MMS Client (triggering
OpenVMS builds). The functions of the base compiler driver on OpenVMS are
provided for you by compiler drivers on Windows NT Alpha and DIGITAL UNIX,
and these drivers combine the compile and link phases to save time. Plus, we’ve
provided a GUI Interactive Compiler Driver (ICD) on Windows NT Alpha. There’s
more tools information in Chapter 4 and the user manuals. Regardless of development
platform or deployment platform, the DIGITAL COBOL family has you covered.

Options

The COBOL command line qualifiers on OpenVMS, paralleled by the flags on
DIGITAL UNIX, can both be used on Windows NT Alpha; the command modifiers
are accepted in either format. Your command-line build procedures and favorite
compile command files can be used on Alpha with little modification, and you can also
use the Interactive Compiler Driver (ICD) to build complex command lines and store
them for repeated use.

The full range of DIGITAL COBOL compiler options on all platforms (refer to
Qualifiers, Flags, Options..., Chapter 6) bring power, efficiency, and productivity to
your development projects.

Resources

DIGITAL has an array of information resources available for you. You can contract
for telephone support (and many of you do). Our award-winning technical
documentation comes in several flavors to satisfy your appetite for information. Online
Help and reference pages are on all four platforms. Bookreader documents are
available on OpenVMS and DIGITAL UNIX, and PDF files are readable on Windows
NT Alpha and DIGITAL UNIX. DIGITAL is also increasing its presence on the
World Wide Web with HTML-based information resources. Try accessing
http://www.openvms.digital.com/commercial/cobol for COBOL information, and
http://www.digital.com/services for information about support services.

Hardcopy, online, and on the Internet, we’ve got the information you want!

http://www.openvms.digital.com/commercial/cobol
www.digital.com/services

The Final "Why"

DIGITAL wants you to know that as your needs grow, we have a platform and a
compiler to meet those needs—and it’s neither exceedingly difficult nor budget-
busting expensive to move your COBOL applications to the DIGITAL COBOL
compiler on your next platform.

Chapter 3

Our DIGITAL COBOL Genealogy

Our DIGITAL COBOL family tree has strong, full branches and solid roots.

First, a Quick History of COBOL

The history of the COBOL programming language begins in 1943. Dr. Grace Murray
Hopper, a professor in the mathematics faculty at Vassar College, decided to forego
academia and join the Navy. She received orders to the Navy’s Bureau of Ordnance
computation project that was then under way at Harvard University. She was initially
assigned to write coded instructions for the Mark I, the world’s first large-scale digital
computer.

At first the coding team wrote a complete set of instructions for each job that had to be
done. Dr. Hopper found that many basic operations were being repeated for each job,
and concluded that it would be far more efficient to write a set of instructions "...that
would do a lot of the basic work over and over again for you." This was quite possibly
the conception of the idea of compilers.

As an employee of Remington Rand in 1952 Dr. Hopper developed the A-0 compiler,
which is considered to be the first formal program to accept generically coded input
and produce machine instructions. A year later she developed the A-1, the first
compiler to accept and resolve symbolic references. Armed with this experience and
her knowledgeable opinions on programming languages, Dr. Hopper developed the
first English language compiler, which was ultimately named B-0 (Flow-matic). This
compiler was completed in 1957.

Not long after this accomplishment, Dr. Hopper met with other computer scientists,
with the goal of developing the specifications for a common business language for
computers. This meeting led to "Initial Specifications for a Common Business
Language," a Department of Defense document. Thus was born COBOL.

In later years Dr. Hopper would be recalled to Navy service twice. In 1985 she received
a promotion to Admiral, and finally retired from the Navy in 1986. That year she
became a senior consultant for Digital Equipment Corporation. Dr. Hopper contributed
significantly to the company until her death in 1992.

Our Family History

Our DIGITAL COBOL history began decades ago. Today’s DIGITAL COBOL
technology is built upon the best features and strengths of our earlier products. This
fosters reliability, and provides a feature-rich COBOL for you. Meet the members of
the DIGITAL COBOL family:

The family has run comfortably on OpenVMS VAX, DIGITAL UNIX, OpenVMS
Alpha, and Windows NT Alpha for some time. The various family members might
have been introduced to you as VAX COBOL, DEC COBOL, DIGITAL COBOL, or
earlier product titles. By whatever name you recognize, this is a stable family.

DIGITAL VAX COBOL

Development

VAX COBOL design and development began in 1978 with the goal of bringing to the
market a new high-performance COBOL product that ran on the VAX-11/780
hardware and VAX/VMS operating system. The original engineering team came from
a background of PDP-11 COBOL and DECsystem 10/20 COBOL, and had early
experience with other programming languages on VAX.

The design center for this new product was an early draft ANSI 1985 standard. Our
efforts culminated in the release of VAX COBOL V1.0 in 1981, four years before the
completion of the new ANSI standard.

The Product

VAX COBOL was renamed DIGITAL VAX COBOL at the time of the V5.5 release.
The product takes full advantage of the OpenVMS operating system facilities and the
VAX architecture.

With the recent releases on OpenVMS VAX, DIGITAL VAX COBOL has extended
functionality and improved performance with a continued focus on robustness and
reliability. With the addition of intrinsic functions and generic subscripts for intrinsic
functions, the product is now ANSI-85/-89 compliant at the HIGH level.

DIGITAL VAX COBOL also includes integrated support for multi-byte character
handling. New I/O enhancements such as segmented key support and more complete
checking of ISAM key declarations give the product more compatibility with file
handling when used in conjunction with other programming languages and in other
implementations of COBOL.

Numerous performance improvements have been made, primarily in the areas of
arithmetic computation (namely, COMP-3 packed decimal and COMP binary) and
sequential I/O (specifically, APPLY DEFERRED WRITE). In response to customer
requests, DIGITAL VAX COBOL now includes more capabilities for currency sign
handling and for handling 4-digit years (targeting increasingly important year 2000
issues).

The DIGITAL VAX COBOL V5.5 Release Notes include a complete summary of the
new functionality and performance improvements introduced over the six (V5.x)
releases during the last seven years. Detailed product information can be found in the
Software Product Description which you can obtain by calling 1-800-DIGITAL, and
at http://www.openvms.digital.com/commercial/cobol/ .

http://www.openvms.digital.com/commercial/cobol/

DIGITAL COBOL

Development

DIGITAL COBOL for Alpha made the highly successful DIGITAL COBOL compiler
technology available on the new high-performance Alpha architecture. Significant
performance gains were made by the use of GEM, the highly advanced code generator
and optimizer that DIGITAL uses in its family of languages. This extended family
includes Ada, BASIC, COBOL, C, C++, Fortran 77, Fortran 90, and Pascal.

The Product

 DIGITAL COBOL emerged first on the Alpha architecture in 1993 (as DEC COBOL)
on OpenVMS Alpha, then in 1994 on DIGITAL UNIX. In 1997, in response to
customer demand, it was introduced on Windows NT Alpha.

Beginning in 1993, features, functionality, and performance improved with each
release of DIGITAL COBOL. Building upon the feature-rich VAX COBOL product
that evolved into DIGITAL VAX COBOL V5.5 (as described in the previous section,
DIGITAL VAX COBOL), we added X/Open functionality, and more. The X/Open
extensions include file sharing and record locking, screen handling, command line and
environment variable / logical (OpenVMS) processing. An Interactive Compiler
Driver was provided in 1997 to supplement the conventional command-line compiler
driver (refer to Interactive Compiler Driver (ICD) in Chapter 4).

To give you more control over certain arithmetic operations, we added CIT3, an option
thta provides increased arithmetic compatibility with DIGITAL VAX COBOL. On
Windows NT Alpha we provide ORGANIZATION INDEXED (by using third-party
ISAM products). On all platforms we give you four-digit year support for the ACCEPT
statement.

Detailed product information can be found in the Software Product Description, which
you can obtain by calling 1-800-DIGITAL, and at:

 http://www.openvms.digital.com/commercial/cobol/

Migration—What’s Involved?

With offerings on two architectures and three different operating systems, DIGITAL
COBOL is naturally designed with compatibility and migration in mind. Whether you
are considering migrating from VAX to Alpha, or between operating systems, you will
be happy to know that DIGITAL COBOL products have the features and capabilities
you need to accomplish this.

From the beginning, DIGITAL COBOL on OpenVMS Alpha was designed to
duplicate as many VAX COBOL features as possible. Our Alpha-based COBOL
contains all the RMS- and language extensions you might have used in your VAX
applications. Naturally, there are some architectural differences, but the history of
successful ports by many of our customers has proven that the differences are
manageable and worth it.

There is information in the book you are reading to help you get started on the path of
migration. For additional information on migration or compatibility, be sure to check
out VAX COBOL and DIGITAL COBOL Compatibility and Migration, Appendix B of
the User Manual.

Migration from VAX to Alpha

Many applications will migrate from VAX to Alpha with no changes needed!
Generally, it’s as simple as copying, unchanged, your COBOL data (sequential,
relative, indexed...) and source code files to the new platform and recompiling there.
Most of DIGITAL’s COBOL extensions are available on the VAX and Alpha
architectures (see Chapter 7 for a table that summarizes the available extensions).

Most of the familiar DIGITAL tools you expect (SORT, DECforms, Oracle CDD/
Repository, Oracle CODASYL DBMS, Oracle Rdb...) are also there on OpenVMS
Alpha. As an added feature, the compiler commands you use in your build system are
provided in a parallel model (see Chapter 6).

http://www.openvms.digital.com/commercial/cobol/

Platform-specific differences do exist. For example, Alpha’s double precision
(D_float) data type is not 100% compatible with the D_float data type on VAX.
However, Alpha supports other floating point data types, so if your VAX application
requires float, and if it utilizes D_float, you can recode that section and go ahead with
your development. Also, Alpha is a 64-bit system, so data alignment differences (for
example, COMP alignment in record structures) may require attention.

Some other key OpenVMS (VAX to Alpha) migration areas that you might need to
examine include:

• Subtle differences in ACCEPT/DISPLAY handling

• /STANDARD=V3 (pre-ANSI-85 results)

• Arithmetic operations (overflow and intermediate precision)

You will find more details on these and other migration topics in VAX COBOL and
DIGITAL COBOL Compatibility and Migration, Appendix B of the User Manual.

Migration between Our Operating Systems

On DIGITAL COBOL’s three Alpha platforms, OpenVMS, DIGITAL UNIX, and
Windows NT Alpha, you will find a maximum amount of compatibility, despite the
differences inherent in these three operating systems.

Our compilers support the full ANSI-85/89 definition of the COBOL language. In
addition, if your needs include file sharing, terminal I/O extensions, report writer, and
other such features, we have them for you. (See the Cross-Platform Compatibility
matrix in Chapter 7.)

It’s a fact that different operating systems have underlying differences that can impact
your application. For example, DIGITAL UNIX and Windows NT Alpha do not offer
support for RMS (the OpenVMS file system), and DIGITAL UNIX and Windows NT
Alpha do not natively provide ISAM.

To meet your ISAM needs on those two platforms, we point you to third party ISAM’s,
that are tested and reliable. We’ve built in compatibility for sequential and relative files
that enables you to move these files from OpenVMS under RMS to DIGITAL UNIX
and Windows NT Alpha. You can use the files immediately—without need for data file
conversion. In short, we recognize the differences, and we help you to deal with them.

Some other key platform (OpenVMS to DIGITAL UNIX or Windows NT Alpha)
migration areas that you will want to consider will be:

• Unavailability of specific tools such as Oracle CDD/Repository and DBMS

• Differences in debugging tools and source code management tools

• CALL USING BY DESCRIPTOR

You will find more differences in VAX COBOL and DIGITAL COBOL Compatibility
and Migration, Appendix B of the User Manual, but these are manageable.

Migration from Other Vendors

When we engineered DIGITAL COBOL on Alpha we included numerous X/Open
COBOL extensions to make it easier to migrate from non-DIGITAL environments.
These extensions include:

• X/Open SCREEN SECTION

• X/Open File sharing and record locking

• X/Open LINE SEQUENTIAL

• X/Open command line and environment variable–(VMS) logical processing

• X/Open RETURN-CODE

This means that DIGITAL COBOL on Alpha provides you with compatibility with
DIGITAL VAX COBOL extensions, as well as compatibility with X/Open
extensions—all usable in the same program or across a suite of programs.

No company has the capacity to support all extensions of all other vendors of COBOL.
Recognizing this, DIGITAL COBOL provides the FOREIGN_EXTENSIONS option
to the RESERVED_WORDS qualifier. This enables diagnostic reporting (as well as
suggested changes) of various COBOL extensions from other vendors that are not
currently implemented in DIGITAL COBOL (see Porting to DIGITAL COBOL from
Other Compilers, Appendix D of the User Manual for more details).

Where Do We Go from Here?

The world of COBOL is a complex one with a long, rich history of innovation and
improvement. In today’s rapidly evolving global economy, this history creates
opportunities, but it also presents problems for which no single COBOL product can
provide all the solutions.

The ability to migrate within our DIGITAL COBOL family offers your business the
best access to the tools for taking advantage of the opportunities and resolving the
problems. In the following chapters, you will find more information on qualifiers, I/O,
switches, and other tools DIGITAL COBOL provides, to help you utilize migration to
achieve your goals.

The following chapters in this book will also provide you with valuable reference
material you can apply on the platform you are using as your development and
deployment home.

Chapter 4

Developing, Debugging, and Maintaining
COBOL Programs

Depending on your target platform, you have a variety of tools and environmental
features available to you for work on the life cycle of your COBOL programs. In
general, the basic life cycle tools that you need are an editor, a librarian, and a
debugger. Optional tools include a data dictionary, code analyzer, and graphical
development environment. We provide you with all of these.

OpenVMS Features: DIGITAL COBOL on VAX and Alpha

The OpenVMS operating system, whether on Alpha or VAX, offers an extensive and
mature programming environment. This section summarizes some of its important
features and tools.

Language-Sensitive Editor (LSE)

The Language-Sensitive Editor (LSE) is a powerful and flexible text editor designed
specifically for software development. It provides the following:

• Templates, which are formatted language constructs, for easy and accurate
COBOL coding

• The COBOL keywords and correct punctuation are provided, and placeholders to
indicate where you can add text

• Commands to compile, review, and correct compilation errors from within the
editor

• Display of diagnostic messages, identifying the location of each error, if you
specify /DIAGNOSTICS when you compile to produce a .DIA file

• Integration with the Code Management System (CMS) for efficient source file
management

• View support, which provides a reverse-design facility with commands to
compress code into overview line summaries, which you can edit to modify your
code easily

• A callable report tool that can print views, standard reports, and customized

reports

To invoke LSE, issue the following command at the DCL prompt:

$ LSEDIT USER.COB

Source Code Analyzer (SCA)

The Source Code Analyzer (SCA) is an interactive tool for program analysis, closely
integrated with LSE. You can invoke SCA through LSE.

SCA provides cross-referencing of program symbols and source files, and does static
analysis of the relationships between subprograms, symbols, and files. SCA can easily
find all references to a data item and identify program interdependencies.

The /ANALYSIS_DATA qualifier on the LSE COMPILE command (or the DCL
COBOL compile command) causes the compiler to generate a data analysis file, which
it stores in an SCA library that you have created.

For more information on LSE and SCA, see the LSE/SCA documentation.

Debugger

The OpenVMS Debugger is a powerful, mature symbolic debugger that you can use
with COBOL programs on OpenVMS systems to track down logical or data errors. As
you execute a program (which you have compiled and linked with the /DEBUG
qualifier), the Debugger allows you to manipulate the flow of control by stepping
through instructions, setting breakpoints, and so forth, and to examine and modify
variables. You can also use the Debugger to examine a failed machine code
instruction. Screen mode is a useful option.

The Debugger uses:

• Traceback information, for an ordered list of active blocks

• A symbol table of al variables, with names and locations

• A source line correlation table to associate lines in your source file with lines in
your executable program

See HELP COBOL/DEBUG, HELP DEBUG, and the user manual for your platform
for additional information. For complete information, see the OpenVMS Debugger
Manual.

Code Management System (CMS)

The Code Management System (CMS) efficiently manages libraries of source code
files. As programmers on your team access various source files to develop or maintain
applications, CMS provides automatic security, easy but controlled accessibility,
prevention of file conflicts, and maintenance of file histories. To use CMS, individual

programmers use simple fetch, reserve, and other commands to get the most recent
files, and discover instantly whether another team member is currently modifying a
file.

Performance and Coverage Analyzer (PCA)

The Performance and Coverage Analyzer (PCA) can be valuable when you are seeking
to improve run-time performance of your program. With PCA, you can target specific
areas of programs that require unusual amounts of CPU time. For example, if PCA tells
you that 80% of the processing time is used by COBOL routines that use the COMP-
3 data type, which only makes up 20% of your routines, you may consider converting
these routines to COMP.

Record Management Services (RMS)

On OpenVMS systems, Record Management Services (RMS) is used by the DIGITAL
COBOL or DIGITAL VAX COBOL Run-Time Library (RTL) to perform input/
output (I/O). You can also access the RMS special registers, which contain the
primary and secondary RMS completion codes of an I/O operation, to analyze errors.

Several DIGITAL extensions to the APPLY clause are available to tune RMS access
to files for improved run-time performance.

Refer to the OpenVMS RMS documentation for complete information about RMS.

System Services

The callable OpenVMS System Services (which use the prefix SYS$) are prewritten
routines with many uses. System services provide basic operating system functions,
interprocess communication, and various control resources to OpenVMS users.

Oracle CDD/Repository

On OpenVMS systems (VAX or Alpha), you can use Oracle CDD/Repository to
maintain shareable data definitions, such as record and field definitions. In large
organizations, many data repositories can be linked to form one logical repository, so
that users across an organization can access the common data definitions, using various
languages.

In COBOL, the COPY FROM DICTIONARY statement copies member definitions in
CDD/Repository.

Oracle CDD/Repository can store dependency information so that, for example, if a
record definition needs to be changed, you can analyze the impact the change will have
on the programs that use it.

Oracle CDD/Repository is an optional product available under a separate license from
Oracle Corporation. (It is not available for UNIX or Windows NT systems.)

Oracle DBMS

Oracle DBMS, including Data Manipulation Language (DML) subschema access, is
supported by DIGITAL COBOL on OpenVMS systems.

Oracle DBMS syntax includes the following language elements:

SUB-SCHEMA, DB, DB-EXCEPTION, LD, COMMIT, CONNECT, ERASE,
FETCH, FIND, FREE, GET, KEEP, MODIFY, READY, RECONNECT,
ROLLBACK, STORE, RETAINING, WHERE, EMPTY, MEMBER, OWNER, and
TENANT.

Online Documentation

Complete information is easily accessible for DIGITAL COBOL and DIGITAL VAX
COBOL on line, as follows:

• Online help provides instant, detailed information about COBOL, including the
complete Release Notes, from the DCL command line. Just type HELP COBOL.

• The complete DIGITAL COBOL and DIGITAL VAX COBOL user and
reference manuals are on line in Bookreader format for users with workstations.

DIGITAL COBOL for DIGITAL UNIX

FUSE

DIGITAL COBOL for DIGITAL UNIX systems supports DEC FUSE, the DIGITAL
integrated software development environment for DIGITAL UNIX workstations.
FUSE helps the programmer with coding, building, debugging, performance analysis,
and code management. Some FUSE tools are layered on commonly used UNIX tools
including make, prof, rcs, and sccs. FUSE tools have easy-to-use Motif graphic
interfaces, including one for its text editor (the emacs and vi editors are also
integrated).

The DEC FUSE integration framework allows tools to invoke one another and trigger
operations. Programming tasks are automated and streamlined, reducing some
operations to a single mouse button click.

With DEC FUSE you can:

• Distribute, build, and run compilations in parallel

• Create and use nested (recursive) makefiles

• Use default configurations to automatically set up tools for a new session

• Create custom language templates for use with the DEC FUSE editor

• Specify preprocessing and postprocessing scripts for code management
operations

• Tailor your work environment, selecting your editor and debugger, as well as
personal favorite (and meaningful) colors and fonts, for example

• Save your work context, and reestablish that work context from session to session.

• Automatically start and configure your chosen development productivity tools

See the DEC FUSE handbook for additional, detailed information.

Ladebug

Ladebug is a symbolic source code debugger with a command-line interface.
dxladebug uses a graphical user interface. The debugger is also integrated as one of the
DEC FUSE tools. It supports most DIGITAL COBOL data types.

With the debugger you can:

• Control the execution of individual source lines in a program

• Set stops (breakpoints) at specific source lines or under various conditions

• Change the value of variables within the debugging environment

• Refer to program locations by their symbolic names, using the debugger's store of
information on the DIGITAL COBOL language to determine the proper scoping
rules and how the values should be evaluated and displayed

• Print the values of variables and set a trace (tracepoint) to notify you when the
value of a variable changes

• Execute shell commands, examine core files, examine the call stack, display
registers, and perform various other functions

The DIGITAL COBOL user manual provides in an appendix a sample Ladebug
debugging session. For complete information, refer to the Ladebug Debugger manual,
part of the DIGITAL UNIX documentation set.

Online Documentation

You can access online information about DIGITAL COBOL for DIGITAL UNIX by
typing man cobol at the system prompt.

DIGITAL COBOL for Windows NT Alpha

Interactive Compiler Driver (ICD)

The Interactive Compiler Driver (ICD) is a graphical tool provided with the DIGITAL
COBOL kit. With it, you can use simple mouse clicks to select:

• Working device

• Working directory

• Filtered file lists and the file to compile

• Compiler options

• Link options

In the previous illustration the file SAMPBAD.COB has been compiled. The source
contains an error that resulted in a compile error message. It appears that line 13 of the
source has a typographical error. You can right-mouse click on the source file that
contains the error to open that file in the Notepad editor and make the necessary
correction.

Features of the ICD include:

• Construction and execution of command lines without extensive typing

• Display of compiler and linker messages

• Access to the Notepad editor to open source files and other files

• Access to the DIGITAL COBOL online User Manual and Online Reference

• Context retention (subsequent launches returns you to the device and directory
where you were last working)

In the preceding illustration the file DEBWIN.COB has been compiled with debug
symbols enabled and no optimization. There were no errors in the compilation.

The preceding illustration shows that the EXE file filter has been applied, so that only
files with the EXE extension will be shown. This step enables a control that has not
previously been seen here: the "Launch WinDbg + File" button. Since the
DEBWIN.EXE file has been selected, if you click on the "Launch..." button now, the
debugger will be launched with the DEBWIN.EXE filespec passed to it.

The ICD is a native Alpha image, and requires no translator or interpreter levels.

A sample ICD session is shown in the appendix on tools in the DIGITAL COBOL
User Manual.

WinDbg

The Microsoft WinDbg debugger is a windows-based debugger provided on the
DIGITAL COBOL kit. It is installed in the \MS_Tools directory under the other
DIGITAL COBOL directories.

WinDbg has the following features:

• Easy setting of breakpoints by double clicking on a line in the source file to
position the text cursor, then selecting Debug|Breakpoints|Add|OK

• Color highlighting: yellow for current line of source code and red for breakpoints,
for example

• Examining and watching variables, in a debugger window that shows variable
values, with watchpoints on variables that you select

• Customized positioning and sizing of various WinDbg windows to display
debugging information as needed

• An option to select case insensitivity, useful for the case-insensitive COBOL
language

For additional information on WinDbg, refer to the Microsoft WinDbg documentation.

Microsoft Developer Studio Debugger

DIGITAL COBOL for Windows NT Alpha Systems produces code that can be
debugged with the Microsoft Developer Studio debugger (msdev.exe). This powerful
debugger can be used to step through source code, set breakpoints, examine variables,
access memory, and other functions.

CMS Client for Windows NT

The Windows NT connection with CMS is the CMS Client for Windows NT Alpha.
The CMS Client allows you to access the CMS server (on an OpenVMS system) where
CMS has been installed, using a Windows-style interface. CMS is the online library
component of DECset that helps track software development and maintenance, as well
as providing a useful repository for source code, binary data, and documentation
source files.

Contact your DIGITAL sales office for additional information.

Online Documentation

The COBOL /? command provides online help. In addition, the DIGITAL COBOL
manuals are available in Adobe Acrobat-readable .PDF format. The Acrobat Reader
is provided on the kit.

Chapter 5

Compiling, Linking, and Running

What do you do with your program code? You compile the source, link the objects,
and run the executables. Plus, your users may well run your program on a continuing
basis. Your compile/link/run command can convey explicit directions for the actions
to be taken upon your source files, object files, listing files, and executable files. You
can direct actions of the compiler parser, engine, and back end. You can carry a
password to an executable that enables operations, specifies a file or files on which to
operate at run time, and directs internal operations of program logic.

DIGITAL COBOL supports command-line interface on OpenVMS, DIGITAL UNIX,
and Windows NT Alpha. The Interactive Compiler Driver provides you with a
graphical interface for compiling, linking, running, editing, and debugging.

Command Sequence and Format

Your command sequence can be as follows:

Simple Compile-Link-Run Commands

COBOL MYPROGRAM
LINK MYPROGRAM
RUN MYPROGRAM (or simply: MYPROGRAM)

Note: The command-line prompt (for example, $, %, C:) associated with your
system would ordinarily appear before these commands.

You can convey extra instructions and information to the commands by adding
modifiers to the command line. These modifiers are relatively consistent across the
platforms, although there are some exceptions. The Modifying the COBOL Command
chapter lists all of the command modifiers.

Compilers on OpenVMS receive command lines directly from your input device
(terminal, file, and so forth). Compilers on DIGITAL UNIX and Windows NT Alpha
have a compiler driver as an intermediate layer between your commands and the
compiler engine.

Command syntax for the various platforms on which our COBOL family runs as
follows:

Compile-Link-Run on OpenVMS VAX

COBOL[/COMMAND-QUALIFIER]... {FILE-SPEC [/FILE-QUALIFIER] ...}...
LINK[/COMMAND-QUALIFIER] ... {FILE-SPEC [/FILE-QUALIFIER] ...}...
RUN[/[NO]DEBUG] {FILE-SPEC}

Compile-Link-Run on OpenVMS Alpha

COBOL[/COMMAND-QUALIFIER]... {FILE-SPEC [/FILE-QUALIFIER] ...}...
LINK[/COMMAND-QUALIFIER] ... {FILE-SPEC [/FILE-QUALIFIER] ...}...
RUN[/[NO]DEBUG] {FILE-SPEC}

Compile-Link-Run on DIGITAL UNIX

cobol [-flags [options]]... {file-spec}
file-spec

Compile-Link-Run on Windows NT Alpha

COBOL [COMPILER OPTIONS] {FILE-SPEC}... [/LINK [LINKER OPTIONS]]
FILE-SPEC

Note that compiling, linking, running and debugging on Windows NT Alpha can also
be accomplished with the Interactive Compiler Driver (ICD). The ICD is described in
Developing, Debugging, and Maintaining COBOL Programs, Chapter 4.

Chapter 6

Modifying the COBOL Command

Qualifiers, Flags, Options...

Regardless of what you call them, you can add modifiers to the COBOL command.
These modifiers will perform specific functions during the lifetime of your
compilation, and will directly affect the results of the compilation.

Modifiers offer you a variety of options for compiling, debugging, and documenting
your programs. Some modifiers have optional keywords that you can add, to further
define the action that you desire. In the following example, ALIGNMENT is a
command modifier, and the PADDING keyword is added:

Example COBOL /ALIGNMENT=PADDING myprogram.cob

Note: When a modifier accepts multiple keywords, you can specify more than one
and separate them with commas (except on DIGITAL UNIX, where the modifier
is repeated for reach keyword). Refer to the syntax of the specific modifiers for
guidance on format (for example, the use of parentheses).

The tables on the following pages show modifiers for the COBOL command on four
supported platforms. D indicates the default, and NA indicates that that particular
modifier does not apply to the indicated platform. Square brackets ([]) indicate that the
enclosed item is optional, and braces ({}) surround required items. You provide
italicized items as required (such as file specifications). The modifiers appear in
alphabetical order.

OpenVMS VAX OpenVMS ALPHA DIGITAL UNIX Windows NT Alpha

NA NA NA /?
equivalent to /HELP

Display the COBOL HELP file on Windows NT. On other platforms Help is displayed by entering an operating
system command, rather than by a COBOL command modifier.

OpenVMS VAX OpenVMS ALPHA DIGITAL UNIX Windows NT Alpha

NA /ALIGNMENT
 [=[NO]PADDING]
/NOALIGNMENT (D)

-align
-align padding

/ALIGNMENT
 [=[NO]PADDING]
/NOALIGNMENT (D)

Specifies the alignment of binary data items within record structures. Specifying ALIGNMENT uses OpenVMS
Alpha data alignment to increase performance and conformity to the Alpha Calling Standard.
ALIGNMENT specifies natural alignment; it aligns all COMP, COMP-1, COMP-2, INDEX, and POINTER data
along natural boundaries. A natural boundary is the smallest boundary at which data can be aligned without
crossing the next boundary for that type. For example, longword is the natural boundary for four byte integers.
Specifying ALIGNMENT is equivalent to using the SYNCHRONIZED clause or using ALIGNMENT compiler
directives. (Refer to the reference manual for your platform for information about the SYNCHRONIZED
clause.)
ALIGNMENT=PADDING indicates Alpha natural alignment and padding of records according to the DIGITAL
Alpha Calling Standard.
The default, NOALIGNMENT, specifies OpenVMS VAX-compatible data alignment. This modifier aligns data
on byte boundaries for compatibility with DIGITAL VAX COBOL and other OpenVMS VAX languages.
The alignment you specify remains in effect throughout a given compilation, except as modified by
ALIGNMENT compiler directives. For more information about the behavior of the ALIGNMENT modifier and
ALIGNMENT compiler directives, refer to the Directives section (in online HELP) and the DIGITAL COBOL
User Manual.

OpenVMS VAX OpenVMS ALPHA DIGITAL UNIX Windows NT Alpha

/ANALYSIS_DATA
 [=filespec]
/NOANALYSIS_DATA (D)

/ANALYSIS_DATA
 [=filespec]
/NOANALYSIS_DATA (D)

NA NA

Indicates whether an ANA file is created during compilation. If you have the DEC Source Code Analyzer (SCA)
installed on your system, you can use ANALYSIS_DATA to generate an output file of source-code analysis
information.
The source-code information file generated by ANALYSIS_DATA has a default file name of the primary source
file and a default file type of ANA. SCA uses the ANA file to display information about program symbols and
source files.
The default, NOANALYSIS_DATA, does not generate an ANA file.
For more information about SCA, see the Guide to Source Code Analyzer for OpenVMS Systems.

OpenVMS VAX OpenVMS ALPHA DIGITAL UNIX Windows NT Alpha

/ANSI_FORMAT
/NOANSI_FORMAT (D)

/ANSI_FORMAT
/NOANSI_FORMAT (D)

-ansi /ANSI_FORMAT
/NOANSI_FORMAT (D)

Indicates that the source program is in conventional ANSI format.
The compiler then expects 80-character card image records with optional sequence numbers in character
positions 1 through 6, indicators in position 7, Area A beginning in position 8, Area B beginning in position 12,
and the identification area in positions 73 through 80.
The default, NOANSI_FORMAT, indicates that the source program is in DIGITAL terminal format, where Area
A begins in position 1, Area B begins in position 5, and the source program records do not have line numbers.

OpenVMS VAX OpenVMS ALPHA DIGITAL UNIX Windows NT Alpha

/AUDIT
 [=("string",...)]
/NOAUDIT (D)

/AUDIT
 [=("string",...)]
/NOAUDIT (D)

NA NA

Controls whether user-supplied text is included in a CDD/Repository history list entry if a compilation accesses
the dictionary.
You can specify from 1 to 64 strings with AUDIT. If you specify more than one string, separate them with
commas and enclose the list in parentheses.
If you specify AUDIT without a string, the compiler creates standard history list entries with no additional text
in the dictionary for COPY FROM DICTIONARY records and for information put in the dictionary as a result
of specifying DEPENDENCY_DATA. Only one user-supplied string is included in these entries, even though
up to 64 can be specified.
The default, NOAUDIT, suppresses the creation of history list entries.

OpenVMS VAX OpenVMS ALPHA DIGITAL UNIX Windows NT Alpha

NA NA NA /BRIEF_HELP
/NOBRIEF_HELP (D)

 Produces a syntax-only version of the HELP file. The default is NOBRIEF_HELP

OpenVMS VAX OpenVMS ALPHA DIGITAL UNIX Windows NT Alpha

NA NA -C NA

Verifies the range of subscripts and reference modifiers. This is the equivalent of -check bounds

OpenVMS VAX OpenVMS ALPHA DIGITAL UNIX Windows NT Alpha

NA NA -c /COMPILE_ONLY
/NOCOMPILE_ONLY (D)

Does not invoke the linker. Creates .\file1.obj for default /OBJECT.

OpenVMS VAX OpenVMS ALPHA DIGITAL UNIX Windows NT Alpha

NA NA -call_shared NA

Produces a dynamic executable that uses shareable objects during run time. The linker searches for unresolved
references in shared library (.so) files before searching in archive library (.a) files. The run-time loader is invoked
to bring in all required shareable objects and resolve any symbols that remained undefined during static link time.
This is the default.

OpenVMS VAX OpenVMS ALPHA DIGITAL UNIX Windows NT Alpha

/CHECK[=(keyword,...)]
/NOCHECK (D)

/CHECK[=(keyword,...)]
/NOCHECK (D)

-check keyword
-check none (D)

/CHECK[=(keyword,...)]
/NOCHECK (D)

Specifies conditions to be checked at execution time. Controls whether the system checks the validity of numeric
digits or PERFORM statements, indexes, subscripts, reference modification, and the OCCURS DEPENDING
ON depending item for specific run-time errors. If you specify any single modifier keyword, the default
keywords do not change unless they are individually modified.
You can select one or more of the following keywords:

Specifying CHECK PERFORM controls whether the system checks PERFORM statements. Incorrect use of
PERFORM statements can produce unpredictable results and, when used with the PERFORM keyword, causes
the system to generate a run-time message and abort the program.
Specifying CHECK BOUNDS controls whether the system checks the range of subscripts, indexes, and the
depending item in the DEPENDING ON phrase of the OCCURS clause. The system generates a run-time
message and aborts the program if it detects one of these errors:
• If DEPENDING ON is not specified and a subscript or index is greater than the upper bound or less than or

equal to zero
• If DEPENDING ON is specified and a subscript or index is greater than the depending item or less than or

equal to zero
• If a depending item is less than the low bound or greater than the upper bound, and either a subscripted or

indexed item references a table or a group containing the table is referenced as a sending item
Specifying /CHECK=DECIMAL controls whether the system checks for numeric characters when using numeric
display items in a numeric context and generates an error if any digit is invalid (not numeric).
(Continued next page)

[NO]PERFORM Verifies that PERFORM statement rules are met.
The default is NOPERFORM.

[NO]BOUNDS Verifies the range of subscripts and reference modifiers.
 The default is NOBOUNDS.

[NO]DECIMAL Validates numeric digits when using display numeric items in a numeric
context.
The default is NODECIMAL.

[NO]DUPLICATE_KEYS
(OpenVMS only)

Verifies that the duplicate key specification for indexed file keys in the
source program matches the duplicate key specification in the physical file.
The default is NODUPLICATE_KEYS.

ALL Same as CHECK with no keywords.

NONE Same as NOCHECK. Default if CHECK is not used.

OpenVMS VAX OpenVMS ALPHA DIGITAL UNIX Windows NT Alpha

(CHECK continued)
Specify CHECK DECIMAL to validate data produced by other systems that might use a different internal
representation for numeric data. You can also use this modifier keyword to detect logic errors in programs that
result in text data being moved to numeric data items.
Specifying CHECK produces extra instructions to perform these checks, which may result in slightly larger
images and slightly longer execution times than the CHECK NODECIMAL modifier keyword.
The default, NOCHECK, is the equivalent of CHECK NONE.
Specify CHECK with the NOOPTIMIZE modifier, as optimization can make finding error found by CHECK
more difficult.

OpenVMS VAX OpenVMS ALPHA DIGITAL UNIX Windows NT Alpha

/CONDITIONALS
 {=(selector,...)}
/NOCONDITIONALS (D)

/CONDITIONALS
 {=(selector,...)}
/NOCONDITIONALS (D)

-conditionals selector /CONDITIONALS
 {=selector}
/NOCONDITIONALS (D)

Controls whether the conditional compilation lines in a source program are compiled or treated as comments.
Specifying CONDITIONALS=(selector,...), where a selector is a list of one or more characters from A to Z,
results in the selected conditional compilation lines being compiled. If you specify more than one selector,
separate them with commas and enclose the list in parentheses.
The default, NOCONDITIONALS, results in all conditional compilation lines being treated as comments during
compilation.

OpenVMS VAX OpenVMS ALPHA DIGITAL UNIX Windows NT Alpha

NA /CONVERT= keyword
/NOCONVERT [D]

-convert keyword /CONVERT=keyword
/NOCONVERT [D]

The keyword options are: LEADING_BLANKS and NOLEADING_BLANKS
Instructs the compiler to check for and change blanks to zeros in numeric display items. This modifier is
particularly useful for porting your existing VAX COBOL programs to an OpenVMS Alpha system, because at
run time blanks in the data will be changed to zeros.
Specifying CONVERT LEADING_BLANKS produces extra instructions to perform these data conversions,
which may result in slightly larger images and slightly longer execution times.

OpenVMS VAX OpenVMS ALPHA DIGITAL UNIX Windows NT Alpha

/COPY_LIST
/NOCOPY_LIST (D)

/COPY_LIST
/NOCOPY_LIST (D)

-copy
-copy_list
-show copy

/COPY_LIST
/NOCOPY_LIST (D)

Controls whether source statements included by COPY statements are printed in the listing file.
COPY_LIST has no effect unless you also specify LIST.
The default, NOCOPY_LIST, suppresses the listing of text copied from library files; only the COPY statement
appears in the listing file.

OpenVMS VAX OpenVMS ALPHA DIGITAL UNIX Windows NT Alpha

/CROSS_REFERENCE
 [=(keyword[,...])]
/NOCROSS_
 REFERENCE (D)

/CROSS_REFERENCE
 [=(keyword[,...])]
/NOCROSS_
 REFERENCE (D)

-cross_reference,
-show xrefkeyword

/CROSS_REFERENCE
 [=keyword]
/NOCROSS_
 REFERENCE (D)

Controls whether the source listing file includes a cross-reference listing.
CROSS_REFERENCE has no effect unless you also specify LIST.
You can select one or both of the following keywords:

ALPHABETICAL (D) The compiler sorts user-defined names in alphabetical order and
lists them with the source program line numbers on which they
appear. CROSS_REFERENCE=ALPHABETICAL is the
equivalent of CROSS_REFERENCE.

DECLARED Produces a listing of user-defined names in order of declaration.

OpenVMS VAX OpenVMS ALPHA DIGITAL UNIX Windows NT Alpha

/DEBUG
 [=(keyword[,...])]
/NODEBUG (D)

/DEBUG
 [=(keyword[,...])]
/NODEBUG (D)

-g [n] /DEBUG
 [=keyword]
/NODEBUG (D)

Controls the amount and type of debugging information in the object file. The keyword names vary by platform
as follows:

Debugging and optimization are interrelated as follows:

Debugging and COPY files require some explanation. On OpenVMS and Windows NT Alpha, you can view source
lines from simple COPY files as well as from the main source file. However, the debugger cannot reference source lines
from COPY statements which reference CDD/Repository or any line in which text has been replaced. On DIGITAL
UNIX, source lines from COPY files are not available to the debugger.

OpenVMS VAX
keyword

OpenVMS Alpha
keyword

DIGITAL UNIX
n

Windows
NT Alpha
keyword

Effect

SYMBOLIC SYMBOLIC -g2 NA Provides local symbol table information,
allowing debugger access to all data
items by data name. On OpenVMS,
paragraph names and section names are
also included for debugger access.

TRACEBACK TRACEBACK -g1 PARTIAL Provides PC to line number correlation,
allowing line by line stepping and tracing.
On OpenVMS, prohibits source code
viewing. On DIGITAL UNIX this is the
default.

ALL ALL -g FULL Provides symbolic and traceback
information as described above.

NA NA NA MINIMAL Provides entry point and assembler code
debugging only. Source code is not
viewable.

NODEBUG NODEBUG -g0 NONE,
NODEBUG

No debugging information is provided.
This is the default (except for DIGITAL
UNIX).

Platform Default Optimization Action

OpenVMS VAX NA

OpenVMS Alpha Optimization defaults are unchanged when DEBUG is specified. Specifying NOOP
with DEBUG is recommended.

DIGITAL UNIX Optimization is turned off when debugging information is requested. Specify -g3 if
DEBUG with optimization is desired.

Windows NT Alpha Optimization is turned off when debugging information is requested. Specify
OPTIMIZATION if debug with optimization is desired.

OpenVMS VAX OpenVMS ALPHA DIGITAL UNIX Windows NT Alpha

/DEPENDENCY_DATA
/NODEPENDENCY_
 DATA (D)

/DEPENDENCY_DATA
/NODEPENDENCY_
 DATA (D)

NA NA

Controls whether or not a compiled module entity is stored in CDD/Repository. If you have CDD/Repository
installed on your system, you can use DEPENDENCY_DATA to store CDD/Repository relationship information
in the dictionary. The information generated will correlate the DIGITAL COBOL program with:
The object file created by the compilation
CDD/Repository entities specified in COPY FROM DICTIONARY statements
CDD/Repository entities explicitly referenced in the
RECORD DEPENDENCY statements

OpenVMS VAX OpenVMS ALPHA DIGITAL UNIX Windows NT Alpha

/DIAGNOSTICS
 [=filespec]
/NODIAGNOSTICS

/DIAGNOSTICS
 [=filespec]
/NODIAGNOSTICS

NA NA

Creates a diagnostic file containing compiler messages and diagnostic information. The diagnostic file is
reserved for use by DIGITAL. The Language-Sensitive Editor (LSE) uses the diagnostic file to display diagnostic
messages and to position the cursor on the line and column where a source error exists. The default file type for
a diagnostic file is DIA.
The default, NODIAGNOSTICS, suppresses the creation of a diagnostic file.

OpenVMS VAX OpenVMS ALPHA DIGITAL UNIX Windows NT Alpha

NA NA NA /DLL= filespec
/NODLL (D)

Specifies that the program should be linked as a dynamic-link library (DLL) and named "filespec".
The default filespec is filespec.DLL
The default is NODLL

OpenVMS VAX OpenVMS ALPHA DIGITAL UNIX Windows NT Alpha

NA NA -o filespec /EXE
/EXE=filespec.exe (D)

On Windows NT Alpha, specifies that the program should be linked as an executable image (.EXE) and given
the name contained in filespec. The default is filespec.EXE.
On DIGITAL UNIX, names the object file if -c is specified; otherwise, names the executable file.

OpenVMS VAX OpenVMS ALPHA DIGITAL UNIX Windows NT Alpha

NA NA NA /EXTCOB=extension

Specifies file extensions to be processed as COBOL source programs. The default extensions are .cob and .cbl.

OpenVMS VAX OpenVMS ALPHA DIGITAL UNIX Windows NT Alpha

NA NA NA /EXTLNK= extension

Specifies file extensions to be processed by the Linker. The default file extensions are: .obj, .lib, .o, .def, .rbj,
.res, .exe, and .dll

OpenVMS VAX OpenVMS ALPHA DIGITAL UNIX Windows NT Alpha

/FIPS=74
/NOFIPS (D)

/FIPS=74
/NOFIPS (D)

-fips 74 /FIPS=74
/NOFIPS (D)

Supports the Federal Information Processing Standards Publication 21–1 (FIPS-PUB 21–1), issued by the U.S.
National Bureau of Standards, interpretation of file status.
FIPS-PUB 21–1 specifies that a file status of 10 be returned when reporting AT END conditions. The FIPS=74
modifier returns a file status of 10 when reporting AT END conditions.
The following table compares the file status values that are returned when you use or do not use the FIPS=74
modifier. AT END file status values apply to any file organization accessed sequentially.
The default, NOFIPS, ensures version to version compatibility for COBOL.
FIPS=74 and NOFIPS modifier only apply when you also specify STANDARD=V3.

FILE STATUS VALUES WITH STANDARD=V3:

FIPS=74 NOFIPS

The file has no next logical record 10 13

An optional file was not present 10 15

The program did not establish a valid next record 10 16

OpenVMS VAX OpenVMS ALPHA DIGITAL UNIX Windows NT Alpha

/FLAGGER
 [=(keyword,...)]
/NOFLAGGER (D)

/FLAGGER
 [=(keyword,...)]
/NOFLAGGER (D)

-flagger keyword /FLAGGER
 [=(keyword,...)]
/NOFLAGGER (D)

Allows you to specify a FIPS level of COBOL syntax, in accordance with the Federal Information Processing
Standards Publication 21-3 (FIPS-PUB 21-3) issued by the U.S. National Bureau of Standards, beyond which the
compiler generates informational messages. To receive these informational messages, you must also specify
WARNINGS=ALL or WARNINGS=INFORMATIONAL. Use the FLAGGER modifier when you know that
your target system's compiler has a low level of FIPS syntax support.
You can select one or more of the following keywords:

You can use any combination of modifier options. if you specify more than one validation level, the compiler uses
the lowest level. If you use FLAGGER without specifying a FIPS level and with another option, the compiler
assumes FLAGGER=HIGH_FIPS.
You cannot specify FLAGGER without also specifying STANDARD=V3.
For additional information about the required and optional modules for the COBOL language, refer to the
American National Standard Programming Language – COBOL, ANSI X3.23-1895, ISO 1989-1985. For more
information about the FIPS validation levels, see Federal Information Processing Standards Publication 21-3.

HIGH_FIPS Flags language constructs that are above the FIPS high validation level, such as DIGITAL
extensions to ANSI COBOL.

INTERMEDIATE_FIPS Flags language constructs that are above the FIPS intermediate validation level, such as
language constructs that are within the FIPS high validation level or DIGITAL extensions to
ANSI COBOL.

MINIMUM_FIPS Flags language constructs that are above the FIPS minimum validation level, such as language
constructs that are within the FIPS high and intermediate validation levels or DIGITAL
extensions to ANSI COBOL.

OBSOLETE Flags language constructs that the ANSI1985 COBOL Standard identifies as obsolete. If a
language construct is within the selected FIPS validation level or optional module and is also on
the obsolete list, the compiler generates only the obsolete informational message.

OPTIONAL_FIPS Flags language constructs that are within FIPS optional modules, including Report Writer and
Segmentation.

REPORT_WRITER A subset of OPTIONAL_FIPS that flags language constructs that are within the FIPS optional
module Report Writer.

SEGMENTATION A subset of OPTIONAL_FIPS that flags language constructs that are within the FIPS optional
module Segmentation.

SEGMENTATION_1 A subset of OPTIONAL_FIPS that flags language constructs that are above the level 1 of the
FIPS optional module Segmentation.

OpenVMS VAX OpenVMS ALPHA DIGITAL UNIX Windows NT Alpha

NA /FLOAT
 =[keyword]

NA NA

Specifies the floating-point data format to be used in memory for single and double precision data items.
You can use FLOAT at compile time to specify either VAX F_floating or IEEE S_floating formats for single
precision data items or VAX D_floating or VAX G_floating or IEEE T_floating formats for double precision data
items. You cannot mix VAX and IEEE formats in the same compilation unit.
You can select one of the following keywords:

The IEEE standard for binary floating-point arithmetic, ANSI/IEEE 754-1985, defines four floating-point
formats in two groups, basic and extended, each group having two widths, single and double. The Alpha
architecture supports the basic single and double formats. Refer to the Alpha Architecture handbook for more
information about using floating-point data types with the Alpha architecture.
Because the Alpha architecture is IEEE-compliant, you can run existing COBOL programs containing IEEE
floating-point data formats on DIGITAL COBOL.
Specifying FLOAT without a keyword is equivalent to specifying FLOAT=D_FLOAT.
Operations on D-FLOAT on Alpha are not 100% compatible with operations on D-DLOAT on VAX.

OpenVMS VAX OpenVMS ALPHA DIGITAL UNIX Windows NT
Alpha

NA /GRANULARITY
 [=keyword]

-granularity { keyword} /GRANULARITY
 [=keyword]

Specifies the minimum size of a memory access. Use GRANULARITY if different processes sharing memory
attempt to update different parts of the same aligned quadword concurrently.
The keyword can be as shown in the following table:

D_FLOAT Specifies that the memory format for COMP-1 data is VAX F_floating and for
COMP-2 data is VAX D_floating. The default is D_FLOAT.

G_FLOAT Specifies that the memory format for COMP-1 data is VAX F_floating and for
COMP-2 data is VAX G_floating.

IEEE_FLOAT Specifies that the memory format for COMP-1 data is IEEE S_floating and for
COMP-2 data is IEEE T_floating.

BYTE Used if concurrent processes sharing memory may be updating different
bytes within the same quadword.

LONG Used if concurrent processes sharing memory may be updating different
longwords within the same quadword.

QUAD (default) Used for best performance if you are sure that no concurrent
updates will occur within the same aligned quadword.

OpenVMS VAX OpenVMS ALPHA DIGITAL UNIX Windows NT Alpha

NA NA NA /HELP
/NOHELP (D)

Displays the help file on the standard output device. Equivalent to /?.

OpenVMS VAX OpenVMS ALPHA DIGITAL UNIX Windows NT Alpha

NA NA -K /KEEP

Does not remove temporary files created during compilation and linking. On DIGITAL UNIX, K does not affect
the naming or location of temporary files. On Windows NT Alpha, KEEP uses the current directory, and uses the
program name to name object files.
To see the names and locations of the temporary files, specify -v.

OpenVMS VAX OpenVMS ALPHA DIGITAL UNIX Windows NT
Alpha

NA NA -L NA

Prevents the linker from searching for libraries in the standard directories.

OpenVMS VAX OpenVMS ALPHA DIGITAL UNIX Windows NT
Alpha

NA NA -L dir NA

Directs the linker to search for libraries in dir before searching the standard directories.

OpenVMS VAX OpenVMS ALPHA DIGITAL UNIX Windows NT
Alpha

NA NA NA /LINKMAP
 [=filespec]
/NOLINKMAP (D)

Specifies that the linker should produce a map file. Default filespec: file1.MAP

OpenVMS VAX OpenVMS ALPHA DIGITAL UNIX Windows NT Alpha

/LIST
 [=filespec]
/NOLIST (D)

/LIST
 [=filespec]
/NOLIST (D)

-list
equivalent to -V

/LIST
 [=filespec]
/NOLIST (D)

Controls whether the compiler produces an output listing file.
When you specify LIST, you can control the defaults applied to the output file specification by your placement
of the modifier in the command (OpenVMS only).
The listing file always contains a listing of the source program, including any diagnostics.
Other portions of the listing file are optionally produced under the control of MACHINE_CODE, MAP, and
CROSS_REFERENCE. LIST is required when you want to use CROSS_REFERENCE, COPY_LIST,
FLAGGER, MACHINE_CODE, or MAP.
In interactive mode NOLIST is the default.
In batch mode, LIST is the default.
 If a filespec is not specified, the compiler will create an output listing file with the same file name as the input
source file and with a default file type of LIS (on OpenVMS), lis (on DIGITAL UNIX), or LST (on Windows NT
Alpha).

OpenVMS VAX OpenVMS ALPHA DIGITAL UNIX Windows NT
Alpha

NA NA -l string NA

Searches for string library for ld. This flag should be placed at the end of the command line.

OpenVMS VAX OpenVMS ALPHA DIGITAL UNIX Windows NT
Alpha

/MACHINE_CODE
/NOMACHINE_CODE (D)

/MACHINE_CODE
/NOMACHINE_CODE (D)

-mach,
-machine_code,
-show code

/MACHINE_CODE
/NOMACHINE_CODE
(D)

Controls whether the listing file contains a list of compiler generated machine code. MACHINE_CODE has no
effect unless you also specify LIST.
The default, NOMACHINE_CODE, suppresses compiler generated machine code in the listing file.
If you specify MACHINE_CODE with OPTIMIZE, the machine code listing may not reflect the actual code
executed for a given statement nor the order of execution.

OpenVMS VAX OpenVMS ALPHA DIGITAL UNIX Windows NT Alpha

/MAP
 [=keyword]
/NOMAP (D)

/MAP
 [=keyword]
/NOMAP (D)

-map {keyword} /MAP
 [=keyword]
/NOMAP (D)]

Controls whether the compiler produces the following maps in the listing file:
a) Data names, procedure names, file names, and their attributes

b) External references such as user-called routines or Run-Time Library routines

You can control the format of the data name, procedure name, and file name maps in the listing file by specifying
one or both of the following keywords:

If you specify MAP=(ALPHABETICAL,DECLARED), the compiler produces both alphabetical and declared
map listings.
MAP has no effect unless you also specify LIST.
The default, NOMAP, suppresses the creation of maps in the listing file.

OpenVMS VAX OpenVMS ALPHA DIGITAL UNIX Windows NT Alpha

NA /MATH_INTERMEDIATE
 [={keyword,...}]

-math_intermediate
 {keyword}

/MATH_INTERMEDIATE
 [={keyword,...}]

Specifies the intermediate data type to be used when the result of an arithmetic operation can not be represented
exactly. The default is MATH_INTERMEDIATE=FLOAT. The keywords are as follows:

ALPHABETICAL Produces an alphabetical list of map items
MAP=ALPHABETICAL is the equivalent of MAP.

DECLARED Produces a list of map items in the order in which they were declared

FLOAT Selects double-precision floating-point for the intermediate data type.
Intermediate values are truncated to the most significant 53 bits, providing
approximately 15 decimal digits of precision.

CIT3 Selects Cobol Intermediate Temporary for the intermediate data type.
Intermediate values are truncated to the most significant 18 decimal digits.

OpenVMS VAX OpenVMS ALPHA DIGITAL UNIX Windows NT Alpha

NA NA -names {keyword} /NAMES
 =keyword

Specifies how source code identifiers and literals that are externally visible are interpreted, in accordance with
the following.keywords:

OpenVMS VAX OpenVMS ALPHA DIGITAL UNIX Windows NT Alpha

/NATIONALITY
 [=keyword]
/NATIONALITY=US (D)

/NATIONALITY
 [=keyword]
/NATIONALITY=US
(D)

-nationality
 {keyword}

/NATIONALITY
 =keyword

Controls whether national language features are selected, as shown in the following table:

LOWERCASE Causes the compiler to force all external names (program ids, literal entrynames in
CALL statements, external data items) to be lowercase. This is the default.

UPPERCASE Causes the compiler to force all external names (program id’s, literal entrynames
in CALL statements, external data items) to be uppercase.

AS_IS Causes the compiler to not change the case of literals used in CALL literal
statements. Other external data names are treated as if NAMES LOWERCASE had
been specified, whereas external program ids are treated as if NAMES
UPPERCASE had been specified.

US The default currency sign and symbol are the Dollar sign, and Japanese language
support features are disabled.

JAPAN The default currency sign and symbol are the Yen sign, and Japanese language
support features are enabled. NODIAGNOSTICS and NOANALYSIS_DATA
are specified implicitly.
The specific features enabled include:
• Yen currency-sign
• National character user-defined-words
• National data items (PIC N)
• National literal (N"")

OpenVMS VAX OpenVMS ALPHA DIGITAL UNIX Windows NT Alpha

NA NA -nolocking /NOLOCKING

Turns off default file locking. Must be used when you compile programs that access files served from NFS or
UCX file systems.

OpenVMS VAX OpenVMS ALPHA DIGITAL UNIX Windows NT Alpha

NA NA NA /NOLOGO

Suppresses product banner. Default: display product banner.

OpenVMS VAX OpenVMS ALPHA DIGITAL UNIX Windows NT Alpha

NA NA -non_shared
-call_shared (D)

NA

Produces a static executable image. The linker will search regular archive library files (.a) to resolve undefined
references;.so files are not searched. Object files (.o) from archives are included in the executable produced. The
default is call_shared, which will produce a dynamic executable image

OpenVMS VAX OpenVMS ALPHA DIGITAL UNIX Windows NT Alpha

/OBJECT
 [=filespec]
/NOOBJECT

/OBJECT
 [=filespec]
/NOOBJECT

-o filespec
-noobject

/OBJECT
 [=filespec]
/NOOBJECT

Specifies the name of the object file. On DIGITAL UNIX, names the object file if -c is specified; otherwise,
names the executable file.
NOOBJECT does not produce an object file and may be useful for syntax checking only. (See also KEEP and
COMPILE_ONLY on DIGITAL UNIX and Windows NT Alpha.)

OpenVMS VAX OpenVMS ALPHA DIGITAL UNIX Windows NT Alpha

NA /OPTIMIZE
 [=LEVEL= n] (D)
/NOOPTIMIZE

-Olevel /OPTIMIZE[= n]
/NOOPTIMIZE

Controls whether the compiler optimizes the program to generate more efficient code for optimum run-time
performance. Specifying NOOPTIMIZE instructs the compiler not to produce optimized code.
You can select one of the levels (value of n) shown in the following table:

Specify NOOPTIMIZE if you specify DEBUG when compiling a program. NOOPTIMIZE expedites and
simplifies your debugging session by putting the machine code in the same order as the lines in the source
program. Optimizations can cause unexpected and confusing behavior in a debugging session. For more
information about debugging your program with the NOOPTIMIZE modifier, see the user manual for your
platform, online HELP or the reference page.
Specify NOOPTIMIZE if you specify MACHINE_CODE when compiling a program to ensure that the machine
code listing reflects the actual code executed for a given statement as well as the order of execution.
NOOPTIMIZE is also useful in conjunction with CHECK, as optimization can make checking more difficult.
Specifying OPTIMIZE, the default, usually makes programs run more efficiently. However, using OPTIMIZE
produces extra instructions to perform the optimization, which may result in larger object modules and longer
compile times than NOOPTIMIZE.
To speed compilations during program development, you may want to compile with NOOBJECT when you want
to check syntax, with NOOPTIMIZE when you check for correct execution, and later with OPTIMIZE for your
final check. For more information about optimizing your program with OPTIMIZE, see the user manual for your
platform, online HELP or the reference page.

0 Has the same effect as /NOOPTIMIZE. All optimizations are turned off.

1 Has some optimizations (such as instruction scheduling).Enables local optimizations and
recognition of common subexpressions. The call graph determines the order of
compilation of procedures.

2 Adds more optimizations (such as loop unrolling or split lifetime analysis) to those in level
1. Enables global optimization and all level 1 optimizations. This includes code motion,
strength reduction and test replacement, split lifetime analysis, code scheduling, and
inlining of arithmetic statement functions.

3 Adds more optimizations (such as decimal shadowing) to those in level 2. All
optimizations are turned on. Enables additional global optimizations that improve speed
(at the cost of extra code size), for example: integer multiplication and division expansion
(using shifts), loop unrolling, and code replication to eliminate branches. Also performs all
level 2 optimizations.

4 Is identical to level 3. OPTIMIZE=LEVEL=4 is the equivalent of OPTIMIZE or not
specifying OPTIMIZE.

OpenVMS VAX OpenVMS ALPHA DIGITAL UNIX Windows NT Alpha

NA NA -pn NA

Controls profiling according to the value of n as shown in the following table:

OpenVMS VAX OpenVMS ALPHA DIGITAL UNIX Windows NT Alpha

NA
(See
/CHECK=DUPLICATE)

NA
(See
/CHECK=DUPLICATE)

-relax_key_checking
-rkc

/RELAX_KEY_
 CHECKING
/NORELAX_KEY
 _CHECKING (D)

Specifies that a file can be opened with fewer keys (not more, however) than the number with which the file was
created; and keys need not match on whether duplicates are allowed. This keyword will provide correct results
only in those cases where the unspecified keys are USAGE DISPLAY PIC X. The checks for key type, size, and
offset are unaffected by this keyword.
Default: NORELAX_KEY_CHECKING

0 Does not permit any profiling. If loading occurs, the standard run-time startup routine
(crt0.o) is used, and the profiling libraries are not searched. This is the default.

1 Sets up profiling by periodically sampling the value of the program counter. This flag
affects only the loading. When loading occurs, this flag replaces the standard run-time
startup routine with the profiling run-time startup routine (mcrt0.o) and searches the
level 1 profiling library (libprof1.a).
When profiling occurs, the startup routine calls monstartup (3) and produces the file
mon.out, which contains execution-profiling data for use with the postprocessor prof
(1).

OpenVMS VAX OpenVMS ALPHA DIGITAL UNIX Windows NT Alpha

NA /RESERVED_WORD
 keyword

-rsv keyword
-rsv xopen (D)

/RESERVED_WORD
 keyword

Controls whether the compiler recognizes certain COBOL words as reserved words. The two options are XOPEN
and FOREIGN_EXTENSIONS, which are explained as follows:

[NO]XOPEN Controls whether or not the compiler recognizes reserved words defined by the
COBOL X/Open Portability Guide. Use /RESERVED_WORDS=NOXOPEN if
your program uses one or more of the X/Open reserved words as an identifier. The
default is /RESERVED_WORDS=XOPEN.
The X/Open reserved words are as follows:

AUTO
BACKGROUND-COLOR
BELL
BLINK
EOL
EOS
ERASE
FOREGROUND-COLOR
FULL

HIGHLIGHT
LOWLIGHT
REQUIRED
RETURN-CODE
REVERSE-VIDEO
SCREEN
SECURE
UNDERLINE

[NO]FOREIGN_EXTENSIONS Controls whether or not the compiler recognizes reserved words used by foreign
extensions (language constructs that are not part of DIGITAL COBOL). Use
/RESERVED_WORDS=FOREIGN_EXTENSIONS if you want the compiler to
output specific diagnostics of foreign extensions to assist you in porting to
DIGITAL COBOL from other COBOL dialects. Do not use this option if your
program uses any of the foreign_extensions reserved words as user-defined words.
The reserved words that are recognized for foreign_extensions are:

ADDRESS
CHANGED
CORD-INDEX
DBCS
DISP
DISPLAY-1
EJECT
ENTRY
EXAMINE
EXHIBIT
GOBACK
ID
KANJI
NAMED
NOTE

OTHERWISE
PASSWORD
POSITIONING
RECORDING
RECORD-OVERFLOW
RELOAD
REORG-CRITERIA
REURNING
SERVICE
SKIP1
SKIP2
SKIP3
TRACE
TRANSFORM

OpenVMS VAX OpenVMS ALPHA DIGITAL UNIX Windows NT Alpha

/SEQUENCE_CHECK
/NOSEQUENCE_CHECK
(D)

/SEQUENCE_CHECK
/NOSEQUENCE_CHECK
(D)

-seq
-sequence_check

/SEQUENCE_CHECK
/NOSEQUENCE_CHECK
(D)

Controls whether the compiler initiates an ascending-order sequence check on the line numbers in columns 1
through 6 of the source program. Source programs written in terminal format always pass the sequence check.
The default, NOSEQUENCE_CHECK, suppresses sequence checking.

OpenVMS VAX OpenVMS ALPHA DIGITAL UNIX Windows NT Alpha

NA NA -shared /DLL [= filespec]
/NODLL (D)

Produces a dynamic shareable object for inclusion in a shared library. The linker will produce a shareable object
that other dynamic executables can use at run time. If you also specify the -c option, shared is ignored and a .o
file is created; otherwise, a .so file is created. The default is to produce a dynamic executable image. See also
call_shared.

OpenVMS VAX OpenVMS ALPHA DIGITAL UNIX Windows NT Alpha

NA NA -show keyword NA

Controls whether the listing will include specified information. The keyword values are shown in the following
table:

OpenVMS VAX OpenVMS ALPHA DIGITAL UNIX Windows NT Alpha

NA NA NA /SOURCE
 [=filespec]

Names a source file. Useful when the source file specification does not end in a standard extension (.cob, .cbl).
Default: Only files ending in the recognized extension are passed to the compiler.

code Include a machine code listing. Equivalent to -mach.

copy Include source statements included by COPY statements. Equivalent to -copy.

xref Include a cross-reference of all symbols used in the source program, with user-defined names
arranged alphabetically, along with line numbers of definitions and uses. Equivalent to -
cross_reference.

OpenVMS VAX OpenVMS ALPHA DIGITAL UNIX Windows NT Alpha

/STANDARD
 [(=keyword,...)]
/STANDARD=85 (D)

/STANDARD
 [(=keyword,...)]
/STANDARD=85 (D)

-std keyword /STANDARD
 [=keyword]
/STANDARD=85 (D)

Controls whether the compiler generates code according to either the ANSI 1974 or 1985 COBOL standard and
produces informational messages associated with specific language features. To receive these informational
messages, you must also specify WARNINGS=ALL or WARNINGS=INFORMATIONAL.
You can select one or more of the following keywords:

DIGITAL VAX COBOL and DIGITAL COBOL are based on the ANSI 1985 COBOL standard (1989
Addendum). As such,DIGITAL COBOL provides full support for the STANDARD=85 modifier keyword as
well as support for some features of the STANDARD=V3 modifier keyword that were available with VAX
COBOL Version 4.0 and higher.
When you specify STANDARD=V3 in specific instances, DIGITAL COBOL exhibits behavior that is consistent
with the ANSI 1985 COBOL standard.
When you specify STANDARD=V3, DIGITAL VAX COBOL exhibits behavior consistent with V3 VAX
COBOL.
For further information about the implementation of the STANDARD=V3 modifier keyword, see the user manual
for your platform.

[NO]85 Produces code according to the 1985 ANSI standard for certain constructs.
The default is STANDARD=85.

[NO]V3 Produces code in the manner of version 3.4 of DIGITAL VAX COBOL in
specific instances, and issues informational messages for language
constructs that would cause different run-time results if STANDARD=85
had been specified. The default is NOV3.

[NO]SYNTAX Produces informational diagnostics on language features that point out
DIGITAL extensions to the ANSI 1985 COBOL Standard. The default is
NOSYNTAX.

[NO]XOPEN
(Alpha only)

Produces code for the ASSIGN clause and default file-sharing behavior in
the manner of the X/Open CAE specification for the COBOL language.
The default is NOXOPEN.

[NO]MIA Issue informational diagnostics for the language elements which do not
conform to the MIA (Multivendor Integration Architecture). The default is
NOMIA.

[NO]OPENVMS_AXP
(DIGITAL VAX COBOL only)

The compiler generates informational messages to flag language constructs
that are not available in DIGITAL COBOL. Using this information on the
coding incompatibilities, you can modify your code before running the
program on an OpenVMS Alpha system.

[NO]PDP11
(DIGITAL VAX COBOL only)

The compiler produces informational diagnostics on language features that
are specific to the PDP11.

OpenVMS VAX OpenVMS ALPHA DIGITAL UNIX Windows NT Alpha

NA NA -taso NA

Tells the linker that the executable should be loaded in the lower 31-bit addressable virtual address range. The -
T and D modifiers to the ld(1) command can also be used to ensure that the text and data segments addresses,
respectively, are loaded into low memory. The flag, however, in addition to setting default addresses for text and
data segments, also causes shared libraries linked outside the 31-bit address space to be appropriately relocated
by the loader.
If you specify taso and also specify text and data segment addresses with T and D, those addresses override the
default addresses. The taso flag is useful for porting 32-bit programs to DIGITAL UNIX.

OpenVMS VAX OpenVMS ALPHA DIGITAL UNIX Windows NT Alpha

NA /TIE
/NOTIE (D)

NA NA

Generates code that allows native OpenVMS Alpha images to call translated VAX images and translated
OpenVMS VAX images to call native OpenVMS Alpha images. This modifier is supported on OpenVMS Alpha
systems only.
Specifying TIE when you want to use native, compiled code with shared translated VAX images, either because
the code might call into a translated VAX image or because it might be called from a translated VAX image. If
you specify TIE, you should link the object module using the LINK command modifier NATIVE_ONLY. (See
the OpenVMS Linker Utility Manual for information about the NATIVE_ONLY modifier.)
Specifying NOTIE, the default, indicates that your compiled code is not associated with a translated VAX image.
For more information about translated images, see Migrating to an Alpha VMS System: Translating Images. For
information about interoperability, see Migrating to an Alpha VMS System: Recompiling and Relinking
Applications.

OpenVMS VAX OpenVMS ALPHA DIGITAL UNIX Windows NT Alpha

NA NA -T num NA

Tells ld 1 to set the text segment origin. If num starts with a hexadecimal letter, precede it with the digit 0.

OpenVMS VAX OpenVMS ALPHA DIGITAL UNIX Windows NT Alpha

NA NA -tps NA

Specifies that files are part of a transaction processing system and enables Encina SFS record storage for
applicable files

OpenVMS VAX OpenVMS ALPHA DIGITAL UNIX Windows NT Alpha

/TRUNCATE
/NOTRUNCATE (D)

/TRUNCATE
/NOTRUNCATE (D)

-trunc /TRUNCATE
/NOTRUNCATE (D)

Controls how the compiler stores values in COMPUTATIONAL receiving items if high-order truncation is
necessary.
If you specify TRUNCATE, the compiler truncates values according to the number of decimal digits specified by
the PICTURE size.
Specifying TRUNCATE increases program execution time.
The default, NOTRUNCATE, instructs the compiler to truncate values according to the hardware storage unit
(word, longword, or quadword) allocated to the receiving item.

OpenVMS VAX OpenVMS ALPHA DIGITAL UNIX Windows NT Alpha

NA NA NA /USAGE

Same as BRIEF_HELP.

OpenVMS VAX OpenVMS ALPHA DIGITAL UNIX Windows NT Alpha

NA NA -V NA

Creates a listing file of the source file with various compile-time information appended. The name of the listing
file is the base name of the source file with .lis substituted for the .cob, .COB, .cbl, or .CBL. Equivalent to list.
If you compile several files together, a separate listing file is created for each input file (named with the base name
of the input file and the .lis suffix).

OpenVMS VAX OpenVMS ALPHA DIGITAL UNIX Windows NT Alpha

NA NA -v /VERBOSE
/NOVERBOSE (D)

Prints the passes as they execute with their arguments and their input and output files.

OpenVMS VAX OpenVMS ALPHA DIGITAL UNIX Windows NT Alpha

NA
*See note below

/VFC (D)
/NOVFC

NA NA

Generates VFC record format for the following types of files:
• LINAGE
• REPORT WRITER
• APPLY PRINT-CONTROL
• WRITE ADVANCING
• ORGANIZATION SEQUENTIAL with GLOBAL
• ORGANIZATION SEQUENTIAL with EXTERNAL
If you specify NOVFC, or if these files are created on DIGITAL UNIX or Windows NT Alpha, these output files
are generated with Stream_LF format.

Note that VFC record format is available on DIGITAL VAX COBOL without the need for a modifier.

OpenVMS VAX OpenVMS ALPHA DIGITAL UNIX Windows NT Alpha

NA NA -w NA

Suppresses all warning messages. Equivalent to nowarn and warn none.

OpenVMS VAX OpenVMS ALPHA DIGITAL UNIX Windows NT Alpha

/WARNINGS
 [=(keyword[,...])]
/NOWARNINGS (D)

/WARNINGS
 [=(keyword[,...])]
/NOWARNINGS (D)

-warn [keyword]
-nowarn (D)

/WARNINGS
 [=keyword]
/NOWARNINGS (D)

Causes the compiler to print warning and informational messages as well as error and severe error messages.
You can select one or more of the keywords shown in the following table:

OpenVMS VAX OpenVMS ALPHA DIGITAL UNIX Windows NT Alpha

NA NA NA /WHAT
/NOWHAT [D]

Displays version information. Default: NOWHAT

OpenVMS VAX OpenVMS ALPHA DIGITAL UNIX Windows NT Alpha

NA NA -xref NA

Directs the DIGITAL COBOL compiler to generate a data file that the DEC FUSE Database Manager uses to
create a cross-reference database file. This improves the performance of the DEC FUSE Call Graph Browser and
Cross-Referencer, which use the database file for their operations. See the DEC FUSE Handbook for more
information on the FUSE cross-reference database and the DEC FUSE Cross-Referencer and Call Graph
Browser.

[NO]INFORMATION Produces additional informational messages.
The default is NOINFORMATION.

[NO]OTHER Produces warning messages. The default is OTHER.

ALL Provides the messages produced by the INFORMATION and OTHER
keywords. WARNINGS=ALL is the equivalent of WARNINGS.

NONE Omits the listing of all messages. WARNINGS=NONE is the
equivalent of NOWARNINGS.

STANDARD Produces informational diagnostics on language features that are
DIGITAL extensions (DIGITAL VAX COBOL only).

OpenVMS VAX OpenVMS ALPHA DIGITAL UNIX Windows NT Alpha

NA NA -xref_stdout NA

Directs the compiler to output the DEC FUSE data file to standard output.

Chapter 7

Useful Summaries and Tables

Whether you are migrating applications or maintaining code, this chapter brings the
following helpful information to one handy location:

• Cross-platform compatibility

• COB$SWITCHES, cob_switches information and examples

• Intrinsic functions

• Allowable I/O statements

• File status values

• ASCII and EBCDIC character codes

• Related documentation

• Corresponding with us

• Online services

• How to order additional documentation

Cross-Platform Compatibility

The following table shows cross-platform compatibility as of the date of publication
of this book. You should refer to the Release Notes and technical documentation for
your platform for the most current state of compatibility of these features.

The key for this table is as follows:

Key Meaning

! Available now

N Not available

P Partial support

FEATURE

COMPATIBILITY

VAX
COBOL

DIGITAL COBOL ON:

OpenVMS
Alpha

DIGITAL
UNIX

Windows
NT Alpha

ANSI-85/-89 (more than 120 verbs) ! ! ! !

Report writer ! ! ! !

Tape handling ! ! ! N

ORGANIZATION INDEXED ! ! ! !

Segmented keys ! ! ! !

/CHECK=DUPLICATE_KEYS ! ! N N

Relaxed key checking N N ! !

RMS segmented keys ! ! N N

RMS special registers ! ! N N

RMS APPLY extensions ! ! N N

/STANDARD=V3 ! P P P

VFU ! N N N

Print control files with VFC ! ! N N

Print control files without VFC N ! ! !

ISAM READ PRIOR/START LESS N ! ! !

VAX/DIGITAL COBOL ACCEPT/DISPLAY extensions ! ! ! P

VAX/DIGITAL COBOL ACCEPT/DISPLAY screen
handling

! ! ! P

DISPLAY WITH CONVERSION ! ! ! !

ACCEPT/DISPLAY VT52 support ! N N N

ACCEPT/DISPLAY VT{1,2,3,4}xx support ! ! ! N

VAX/DIGITAL COBOL file sharing and record locking ! ! P P

UCX/NFS support (nolocking) N N ! !

FUNCTION ARGCOUNT ! ! N N

Little-endian COMP data ! ! ! !

F,D floating ! ! N N

G floating N ! N N

IEEE S,T floating N ! ! !

Floating point “E” literal ! ! ! !

Pointer data ! ! ! !

64-bit pointers N N ! N

/CHECK=DECIMAL P ! ! !

X/Open RETURN-CODE N ! ! !

X/Open COMP-5/COMP-X N ! ! !

X/Open LINE SEQUENTIAL N ! ! !

X/Open ASSIGN TO N ! ! !

X/Open SCREEN SECTION N ! ! P

X/Open SCREEN SECTION screen handling N ! ! P

X/Open file sharing and record locking N ! ! !

X/Open environment variables N ! ! !

X/Open command line N ! ! !

/CHECK=(PERFORM,BOUNDS) ! ! ! !

VAX-compatible alignment ! ! ! !

Alpha natural alignment and padding N ! ! !

/[NO]SEPARATE_COMPILATION P ! N N

I18N (PIC N, etc.) ! ! ! !

CALL USING BY DESCRIPTOR ! ! N N

cobfunc, cobcall, cobcancel N ! ! N

Reformat ! ! ! !

Terminal source format ! ! ! !

Lowercase, -/_ in source ! ! ! !

FEATURE

COMPATIBILITY

VAX
COBOL

DIGITAL COBOL ON:

OpenVMS
Alpha

DIGITAL
UNIX

Windows
NT Alpha

COB$SWITCHES, cob_switches

COBOL has switches that can be set and tested from within an application. These
switches can be extended beyond the application’s internal environment at run time by
using the environment variables COB$SWITCHES (on OpenVMS platforms) and
COBOL_SWITCHES (on DIGITAL UNIX and Windows NT Alpha platforms). You
can access and manipulate these switches from the command line and from within your
programs.

Setting Switches Inside Your Program

To set switches from within an application, define them in the SPECIAL-NAMES
paragraph of the ENVIRONMENT DIVISION and use the SET statement in the
PROCEDURE DIVISION to specify switches ON or OFF, as in the following
example:

ENVIRONMENT DIVISION.
CONFIGURATION SECTION

IDENT ! ! N N

Sample Application - Client/Server N N N !

Oracle CDD/Repository,DML support ! ! N N

Transarc Encina (-tps) support N N ! N

DECset PCA,LSE/SCA support ! ! N N

DECset PDF support ! N N N

FUSE support N N ! N

Symbolic debugger support ! ! ! !

Docs - UM/RM/IG/RN (IG in UM for NT)1 ! ! ! !

Docs - Client/Server N N N !

Docs - DML ! ! N N

Docs - online help ! ! ! !

Docs - UM/RM .DECW$BOOK or .PDF ! ! ! !

1. IG: Installation Guide; UM: User Manual; RM: Reference Manual; NT: Windows NT Alpha

FEATURE

COMPATIBILITY

VAX
COBOL

DIGITAL COBOL ON:

OpenVMS
Alpha

DIGITAL
UNIX

Windows
NT Alpha

SPECIAL-NAMES.
SWITCH 10 IS MY-SWITCH
ON IS SWITCH-ON
OFF IS SWITCH-OFF.
.
.
.
PROCEDURE DIVISION.
000-SET-SWITCH.
SET MY-SWITCH TO ON.
IF SWITCH-ON
THEN
DISPLAY "SWITCH 10 IS ON"
.
.
.

To change the status of internal switches during execution, turn them on or off from
within your program. However, be aware that this information is not saved between
runs of the program.

Setting Switches Outside Your Program

COB$SWITCHES and COBOL_SWITCHES exist in your programming environment
as environment variables. How you set or read them depends upon your platform.

OpenVMS Switches
To set switches for your process, use the DEFINE or ASSIGN DCL command to
change the status of program switches as follows:

$ DEFINE COB$SWITCHES "SWITCH-LIST"

SWITCH-LIST can contain up to 16 switches separated by commas. Set a switch ON
by specifying it in the switch-list. A switch is OFF (the default) if you do not specify
it in the switch-list.

For example, to set the named switches on:

$ DEFINE COB$SWITCHES "1,5,13"
$ DEFINE COB$SWITCHES "9,11,16"

To set all switches off:

$ DEFINE COB$SWITCHES " "

DIGITAL UNIX Switches
To set switches from outside the image, use the SETENV command to change the
status of program switches, as follows:

 % setenv cobol_switches "switch-list"

To remove switch settings:

 % unsetenv cobol_switches

To check switch settings, enter the following command:

 % printenv cobol_switches
The switch-list can contain up to 16 switches separated by commas. To set a switch on,
specify it in the switch-list.

A switch is off (the default) if you do not specify it in the switch-list.

For example, to set the named switches on:

 % SETENV COBOL_SWITCHES "1,5,13"
 % SETENV COBOL_SWITCHES "9,11,16"

To set all switches off:

 % SETENV COBOL_SWITCHES " "

Windows NT ALPHA Switches
To set switches from outside the image, use the set command to change the status of
program switches, as follows:

C: SET COBOL_SWITCHES=SWITCH-LIST
Where switch–list is a list of current values from 1 to 16

To remove switch settings use set with no argument:

C: SET COBOL_SWITCHES=

To check switch settings, enter the following command:

C: ECHO %COBOL_SWITCHES%

The switch-list can contain up to 16 switches separated by commas. To set a switch on,
specify it in the switch-list. A switch is off (the default) if you do not specify it in the
switch-list.

For example, to set the named switches on:

C: SET COBOL_SWITCHES=1,5,13
C: SET COBOL_SWITCHES=9,11,16

To set all switches off:

C: SET COBOL_SWITCHES=

Four-Platform Example to Evaluates Switches

The following example program tests for the state of switches 1 through 16:

IDENTIFICATION DIVISION.
PROGRAM-ID. SWITCHTEST.
*
* THIS PROGRAM EXERCISES SWITCH-STATUS CONDITION TESTING.
* ASSUMPTION: SWITCHES 1, 2, 3, 4 ON.
* ASSUMPTION: SWITCHES 13, 14, 15, 16 OFF.
*
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAXORALPHA.
OBJECT-COMPUTER. VAXORALPHA.
SPECIAL-NAMES.

SWITCH 1 ON STATUS IS S1ON
SWITCH 2 ON STATUS IS S2ON, OFF STATUS IS S2OFF
SWITCH 3 OFF STATUS IS S3OFF
SWITCH 4 OFF STATUS IS S4OFF, ON STATUS IS S4ON
SWITCH 13 ON STATUS IS S13ON,
SWITCH 14 ON STATUS IS S14ON, OFF STATUS IS S14OFF
SWITCH 15 OFF STATUS IS S15OFF
SWITCH 16 OFF STATUS IS S16OFF, ON STATUS IS S16ON.

*
DATA DIVISION.
PROCEDURE DIVISION.
S0 SECTION.
P0.

DISPLAY " SWITCHTEST".
IF S1ON GO TO P1.
DISPLAY "? 1".

P1. IF S2ON GO TO P2.
DISPLAY "? 2".

P2.
IF S2OFF DISPLAY "? 3"
IF S3OFF DISPLAY "? 4".
IF S4OFF DISPLAY "? 5".
IF S4ON GO TO P3.
DISPLAY "? 6".

P3.
IF S13ON DISPLAY "? 7".
IF S14ON DISPLAY "? 8".
IF S14OFF GO TO P4.
DISPLAY "? 9".

P4.
IF S15OFF GO TO P5.
DISPLAY "? 10".

P5.
IF S16OFF GO TO P6.
DISPLAY "? 11".

P6.
IF S16ON DISPLAY "? 12".

*
DISPLAY "*****END*****".

*
STOP RUN.

Intrinsic Functions

DIGITAL COBOL intrinsic functions are powerful programming tools that
dynamically derive a data value at run time. They relieve you of having to include code
for tasks that are performed frequently. The returns are treated as temporary
elementary data items.

There are six basic categories of intrinsic functions as shown in the following table:

Category Functions

Scientific/Mathematical ACOS, ASIN, ATAN, COS, FACTORIAL, LOG, LOG10,
MOD, REM, SIN, SQRT, SUM, TAN

Relational MAX, MIN, ORD-MAX, ORD-MIN

String Manipulation LOWER-CASE, NUMVAL, NUMVAL-C, REVERSE,
UPPER-CASE

Date Manipulation CURRENT-DATE, DATE-OF-INTEGER, DAY-OF-
INTEGER, INTEGER-OF-DATE, INTEGER-OF-DAY,
WHEN-COMPILED

Statistical/Accounting ANNUITY, MEAN, MEDIAN, MIDRANGE, PRESENT-
VALUE, RANGE, STANDARD-DEVIATION,
VARIANCE

Programming Aids ARGCOUNT (OpenVMS only), CHAR, INTEGER,
INTEGER-PART, LENGTH, ORD, RANDOM

The functions, their input arguments, types, and returns for the DIGITAL COBOL
functions are arranged alphabetically in the following table:

Function

Arguments

 A: Alphabetic
AN: Alphanumeric
 I: Integer
 N: Numeric

Function
Type Returns

ACOS 1N, num Numeric Arccosine of num

ANNUITY 1N, num; 1I, int Numeric Ratio of annuity paid for each of int periods
at interest of num to initial investment of one
monetary unit

ARGCOUNT
(OpenVMS only)

None Integer Number of arguments passed to the COBOL
program

ASIN 1N, num Numeric Arcsine of num

ATAN 1N, num Numeric Arctangent of num

CHAR 1I, int Alphanumeric Character in position int of program
collating sequence

COS 1N, num Numeric Cosine of num

CURRENT-DATE None Alphanumeric Current date and time

DATE-OF-INTEGER 1I Integer Standard date equivalent (YYYYMMDD)
of integer date

DAY-OF-INTEGER 1I Integer YYYYDDD date equivalent of integer date

FACTORIAL 1I, int Integer Factorial of int

INTEGER 1N, num Integer The greatest integer not greater than num

INTEGER-OF-DATE 1I Integer Integer date equivalent of standard date

INTEGER-OF-DAY 1I Integer Integer date equivalent of date in
YYYYDDD format

INTEGER-PART 1N, num Integer Integer part of num

(Continued)
LENGTH 1A or N or AN, or

1NN
Integer Length of argument

LOG 1 N, num Numeric Natural logarithm of num

LOG10 1 N, num Numeric Logarithm to base 10 of num

LOWER-CASE 1 A or 1 AN Alphanumeric All letters in the argument set to lowercase

MAX 1 or more A and/or
AN,
or 1 or more I and/or
N

Depends on
arguments
(see manual)

Value of maximum argument

MEAN 1 or more N Numeric Arithmetic mean of arguments

MEDIAN 1 or more N Numeric Median of arguments

MIDRANGE 1 or more N Numeric Mean of minimum and maximum arguments

MIN 1 or more A and/or
AN,
or 1 or more I and/or
N

Depends on
arguments
(see manual)

Value of minimum argument

Mod 1 I, int-1 and int-2 Integer Value of int-1 modulo int-2

NUMVAL 1 AN Numeric Numeric value of simple numeric string

NUMVAL-C 1 OR 2 AN Numeric Numeric value of numeric string with optional
commas and currency sign

ORD 1 A or 1 AN Integer Ordinal position of the argument in collating
sequence

ORD-MAX 1 or more A, or 1 or
more N, or 1 or more
AN

Integer Ordinal position of maximum argument

ORD-MIN 1 or more A, or 1 or
more N, or 1 or more
AN

Integer Ordinal position of minimum argument

PRESENT-VALUE 1 N, num-1; and 1 or
more additional N,
num-2

Numeric Present value of a series of future period-end
amounts, num-2, at a discount rate of num-1

RANDOM 1 I or none Numeric Random number

I/O Statements

The following tables show allowable I/O statements for sequential, line sequential,
relative, and indexed files.

(Continued)
RANGE

1 or more I, or 1 or
more N

Depends on
arguments

Value of maximum argument minus value of
minimum argument

REM 2 N, num-1 and num-
2

Numeric Remainder of num-1/num-2

REVERSE 1A or 1 AN Alphanumeric Reverse order of the characters of the argument

SIN 1 N, num Numeric Sine of num

SQRT 1 N, num Numeric Square root of num

STANDARD-
DEVIATION

1 or more N Numeric Standard deviation of arguments

SUM 1 or more I, or
1 or more N

Depends on
arguments

Sum of arguments

TAN 1 N, num Numeric Tangent of num

UPPER-CASE 1 A or AN All letters in the argument set to uppercase

VARIANCE 1 or more N Numeric Variance of argument

WHEN-COMPILED None Alphanumeric Date and time program was compiled

File

Organization

Access

Mode Statement

 Open Mode

INPUT OUTPUT I/O EXTEND

SEQUENTIAL SEQUENTIAL READ
REWRITE
WRITE
UNLOCK

Yes
No
No
Yes

No
No
Yes
Yes

Yes
Yes
No
Yes

No
No
Yes
Yes

File

Organization

Access

Mode Statement

 Open Mode

INPUT OUTPUT I/O EXTEND

LINE
SEQUENTIAL

SEQUENTIAL READ
REWRITE
WRITE
UNLOCK

Yes
No
No
Yes

No
No
Yes
Yes

No
No
No
No

No
No
Yes
Yes

File

Organization

Access

Mode Statement

 Open Mode

INPUT OUTPUT I/O EXTEND

RELATIVE SEQUENTIAL DELETE
READ
REWRITE
START
WRITE
UNLOCK

No
Yes
No
Yes
No
Yes

No
No
No
No
Yes
Yes

Yes
Yes
Yes
Yes
No
Yes

No
No
No
No
Yes
Yes

RANDOM DELETE
READ
REWRITE
WRITE
UNLOCK

No
Yes
No
No
Yes

No
No
No
Yes
Yes

Yes
Yes
Yes
Yes
Yes

No
No
No
No
No

DYNAMIC DELETE
READ
READ NEXT
REWRITE
START
WRITE
UNLOCK

No
Yes
Yes
No
Yes
No
Yes

No
No
No
No
No
Yes
Yes

Yes
Yes
Yes
Yes
Yes
Yes
Yes

No
No
No
No
No
No
No

File Status Values

The file status codes that you receive may vary, depending upon the presence and
setting of the STANDARD command modifier. See /STANDARD in Modifying the
COBOL Command, Chapter 6, and the user manual for your platform.

File

Status

I/O

Statements

File

Organization

Access

Mode Meaning

00 All All All Successful

02 REWRITE
WRITE

Ind All Created duplicate alternate key

02 READ Ind All Detected alternate duplicate key

File

Organization

Access

Mode Statement

 Open Mode

INPUT OUTPUT I/O EXTEND

INDEXED SEQUENTIAL DELETE
READ
REWRITE
START
WRITE
UNLOCK

No
Yes
No
Yes
No
Yes

No
No
No
No
Yes
Yes

Yes
Yes
Yes
Yes
No
Yes

No
No
No
No
Yes
Yes

RANDOM DELETE
READ
REWRITE
WRITE
UNLOCK

No
Yes
No
No
Yes

No
No
No
Yes
Yes

Yes
Yes
Yes
Yes
Yes

No
No
No
No
No

DYNAMIC DELETE
READ
READ NEXT
READ PRIOR
REWRITE
START
WRITE
UNLOCK

No
Yes
Yes
Yes
No
Yes
No
Yes

No
No
No
No
No
No
Yes
Yes

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

No
No
No
No
No
No
No
No

04 READ All All Record not size of user’s buffer

05 OPEN All All Optional file not present

07 CLOSE
OPEN

All All Invalid file organization or device

10 READ All Seq No next logical record or option file
not present (at end)

14 READ Rel All Relative record number too large

21 REWRITE Ind Seq Primary key changed after READ

21 WRITE Ind Seq Attempted nonascending key value
(invalid key)

22 REWRITE Ind All Duplicate alternate key (invalid
key)

22 WRITE Ind, Rel Ran Duplicate key (invalid key)

23 DELETE
READ
REWRITE
START

Ind, Rel Ran Record not in file; optional file not
present (invalid key)

24 WRITE Ind, Rel All Boundary violation or relative
record number too large (invalid
key)

30 All All All All other permanent errors

34 WRITE Seq Seq Boundary violation

35 OPEN All All File not found

37 OPEN All All Inappropriate device type

38 OPEN All All File previously closed with lock

39 OPEN All All Conflict of file attributes

41 OPEN All All File already opened

42 CLOSE All All File not opened

43 DELETE
REWRITE

All Seq No previous READ or START

44 REWRITE
WRITE

All All Invalid record size

46 READ All Seq No valid next record (at end)

File

Status

I/O

Statements

File

Organization

Access

Mode Meaning

Character Codes

47 READ
START

All All File not open, or incompatible open
mode

48 WRITE All All File not open, or incompatible open
mode

49 DELETE
REWRITE

All All File not open, or incompatible open
mode

90 All All All Record locked by another user
(record available)

91 OPEN All All File locked by another user

92 DELETE
READ
REWRITE
START
WRITE

All All Record locked by another user
(record not available)

93 UNLOCK All All No current record

94 UNLOCK All All File not open, or incompatible open
mode

95 OPEN All All No file space on device

98 CLOSE All All Any other CLOSE error

Character
ASCII EBCDIC

Decimal Hex Decimal Hex

NUL 000 00 000 00

SOH 001 01 001 01

STX 002 02 002 02

ETX 003 03 003 03

EOT 004 04 055 37

ENQ 005 05 045 2D

ACK 006 06 046 2E

File

Status

I/O

Statements

File

Organization

Access

Mode Meaning

BEL 007 07 047 2F

BS 008 08 022 16

HT 009 09 005 05

LF 010 0A 037 25

VT 011 0B 011 0B

FF 012 0C 012 0C

CR 013 0D 013 0D

SO 014 0E 014 0E

SI 015 0F 015 0F

DLE 016 10 016 10

DC1 017 11 017 11

DC2 018 12 018 12

DC3 019 13 019 13

DC4 020 14 060 3C

NAK 021 15 061 3D

SYN 022 16 050 32

ETB 023 17 038 26

CAN 024 18 024 18

EM 025 19 025 19

SUB 026 1A 063 3F

ESC 027 1B 039 27

FS 028 1C 028 1C

GS 029 1D 029 1D

RS 030 1E 030 1E

US 031 1F 031 1F

space 032 20 064 40

! 033 21 090 5A

" 034 22 127 7F

Character
ASCII EBCDIC

Decimal Hex Decimal Hex

035 23 123 7B

$ 036 24 091 5B

% 037 25 108 6C

& 038 26 080 50

’ 039 27 125 7D

(040 28 077 4D

) 041 29 093 5D

* 042 2A 092 5C

+ 043 2B 078 4E

, 044 2C 107 6B

- 045 2D 096 60

. 046 2E 075 4B

/ 047 2F 097 61

0 048 30 240 F0

1 049 31 241 F1

2 050 32 242 F2

3 051 33 243 F3

4 052 34 244 F4

5 053 35 245 F5

6 054 36 246 F6

7 055 37 247 F7

8 056 38 248 F8

9 057 39 249 F9

: 058 3A 122 7A

; 059 3B 094 5E

< 060 3C 076 4C

= 061 3D 126 7E

 > 062 3E 110 6E

Character
ASCII EBCDIC

Decimal Hex Decimal Hex

? 063 3F 111 6F

@ 064 40 124 7C

A 065 41 193 C1

B 066 42 194 C2

C 067 43 195 C3

D 068 44 196 C4

E 069 45 197 C5

F 070 46 198 C6

G 071 47 199 C7

H 072 48 200 C8

I 073 49 201 C9

J 074 4A 209 D1

K 075 4B 210 D2

L 076 4C 211 D3

M 077 4D 212 D4

N 078 4E 213 D5

O 079 4F 214 D6

P 080 50 215 D7

Q 081 51 216 D8

R 082 52 217 D9

S 083 53 226 E2

T 084 54 227 E3

U 085 55 228 E4

V 086 56 229 E5

W 087 57 230 E6

X 088 58 231 E7

Y 089 59 232 E8

Z 090 5A 233 E9

Character
ASCII EBCDIC

Decimal Hex Decimal Hex

[091 5B

\ 092 5C 224 E0

] 093 5D

^ 094 5E 095 5F

_ 095 5F 109 6D

‘ 096 60 121 79

a 097 61 129 81

b 098 62 130 82

c 099 63 131 83

d 100 64 132 84

e 101 65 133 85

f 102 66 134 86

g 103 67 135 87

h 104 68 136 88

i 105 69 137 89

j 106 6A 145 91

k 107 6B 146 92

l 108 6C 147 93

m 109 6D 148 94

n 110 6E 149 95

o 111 6F 150 96

p 112 70 151 97

q 113 71 152 98

r 114 72 153 99

s 115 73 162 A2

t 116 74 163 A3

u 117 75 164 A4

v 118 76 165 A5

Character
ASCII EBCDIC

Decimal Hex Decimal Hex

w 119 77 166 A6

x 120 78 167 A7

y 121 79 168 A8

z 122 7A 169 A9

{ 123 7B 192 C0

| 124 7C 106 6A

} 125 7D 208 D0

~ 126 7E 161 A1

DEL 127 7F 007 07

Character
ASCII EBCDIC

Decimal Hex Decimal Hex

Related Documentation

Documentation Sets

The documentation sets for our COBOL family include this book and the following:

Corresponding with Us

Documentation Comments

If you have comments or suggestions about this book, send them to the product team
by one of the following:

FAX: 603–884–0120 Attn.: COBOL Documentation Project Leader

E-MAIL: cobol_docs@bookie.zko.dec.com

Online Services

To locate product-specific information, refer to the following online services:

• The Digital Equipment Corporation home page:

http://www.digital.com

• The DIGITAL COBOL home page:

http://www.openvms.digital.com/commercial/cobol/

DIGITAL VAX COBOL VAX COBOL User Manual
VAX COBOL Reference Manual
VAX COBOL Installation Guide

DIGITAL COBOL for DIGITAL UNIX DIGITAL COBOL User Manual
DIGITAL COBOL Reference Manual
DIGITAL COBOL Installation Guide

• For OpenVMS Alpha systems

• For DIGITAL UNIX systems

DIGITAL COBOL for OpenVMS Alpha

Windows NT Alpha DIGITAL COBOL User Manual
DIGITAL COBOL Online Reference

http://www.digital.com
http://www.openvms.digital.com/commercial/cobol/

Note that this home page covers four platforms.

How to Order Additional Documentation

To order additional documentation, use the following table:

U.S.A. DECdirect

800–DIGITAL

800–344–4825

Fax: 800–234–2298

Digital Equipment Corporation

P.O. Box CS2008

Nashua, NH 03061

Puerto Rico 809–781–0505

Fax: 809–749–8300

Digital Equipment Caribbean, Inc.

3 Digital Plaza, 1st Street, Suite 200

P.O. Box 11038

Metro Office Park

San Juan, Puerto Rico 00910–2138

Canada 800–267–6215

Fax: 613–592–1946

Digital Equipment of Canada, Ltd.

Box 1300

100 Herzberg Road

Kanata, Ontario, Canada K2K 2A6

Attn: DECdirect Sales

International Local DIGITAL subsidiary or approved
distributor

Internal Orders DTN: 264–4446

603–884–4446

Fax: 603–884–3960

U.S. Software Supply Business

Digital Equipment Corporation

Nashua, NH 03063–1260

http://www.openvms.digital.com/commercial/cobol/

Symbols
/? 6-1
/ALIGNMENT 6-2
/ANSI_FORMAT 6-3
/AUDIT 6-3
/BRIEF_HELP 6-3
/CHECK 6-5
/CONDITIONALS 6-6
/CROSS_REFERENCE 6-7
/DEPENDENCY_DATA 6-9
/DIAGNOSTICS 6-9
/DLL 6-9, 6-22
/FIPS 6-11
/FLOAT 6-13
/GRANULARITY 6-13
/HELP 6-14
/KEEP 6-14
/LINKMAP 6-14
/LIST 6-15
/MACHINE_CODE 6-15
/MAP 6-16
/MATH_INTERMEDIATE 6-16
/NATIONALITY 6-17
/NOLOGO 6-18
/OBJECT 6-18
/SEQUENCE_CHECK 6-22
/STANDARD 6-23
/TIE 6-24
/TRUNCATE 6-25
/USAGE 6-25
/VERBOSE 6-25
/VFC 6-26
/WARNINGS 6-27
/WHAT 6-27

A
ACOS 7-9

Acrobat Reader 4-9
-align 6-2
ANNUITY 7-9
-ansi 6-3
ARGCOUNT 7-9
ASIN 7-9
ATAN 7-9

C
CHAR 7-9
Character 7-15
Character codes

ASCII 7-15
EBCDIC 7-15

-check 6-5
Client-Server 2-2
CMS Client for Windows NT 4-9
COB$SWITCHES 7-4
cob_switches 7-4
COBOL command modifiers

/? 6-1
/ALIGNMENT 6-2
/ANALYSIS_DATA 6-2
/ANSI_FORMAT 6-3
/AUDIT 6-3
/BRIEF_HELP 6-3
/CHECK 6-5
/CONDITIONALS 6-6
/COPY_LIST 6-7
/CROSS_REFERENCE6-7
/DEBUG 6-8
/DEPENDENCY_DATA 6-9
/DIAGNOSTICS 6-9
/DLL 6-9
/FIPS 6-11
/FLOAT 6-13
/GRANULARITY 6-13
/HELP 6-14

Index

/KEEP 6-14
/LINKMAP 6-14
/LIST 6-15
/MACHINE_CODE 6-15
/MAP 6-16
/MATH_INTERMEDIATE 6-16
/NAMES 6-17
/NATIONALITY 6-17
/NOLOCKING 6-18
/NOLOGO 6-18
/OBJECT 6-18
/OPTIMIZE 6-19
/RELAX_KEY_ CHECKING 6-20
/RESERVED_WORD6-21
/SEQUENCE_CHECK6-22
/STANDARD 6-23
/TIE 6-24
/TRUNCATE 6-25
/USAGE 6-25
/VERBOSE 6-25
/VFC 6-26
/WARNINGS 6-27
-align 6-2
-ansi 6-3
-check 6-5
-conditionals6-6
-copy 6-7
-cross_reference6-7
DLL 6-22
-fips 6-11
-g 6-8
-granularity 6-13
-K 6-14
-L 6-14
-l 6-15
-list 6-15
-mach 6-15
-map 6-16
-names6-17
-nolocking 6-18
-O 6-19
-p 6-20
-relax_key_checking6-20
-seq 6-22
-shared6-22

-show 6-22
-std 6-23
-t 6-24
-taso 6-24
-V 6-25
-v 6-25
-w 6-26
-warn 6-27

Code Management System (CMS) 4-2
Command Sequences and Formats 5-1
-conditionals 6-6
Conventions used in this book viii
-copy_list 6-7
COS 7-9
-cross_reference 6-7
Cross-platform compatibility 7-1
CURRENT-DATE 7-9

D
DATE-OF-INTEGER 7-9
DAY-OF-INTEGER 7-9
Debugger 4-2
Developing, Debugging, Maintaining

DIGITAL COBOL for DIGITAL UNIX 4-1
DIGITAL UNIX 4-1
DIGITAL VAX COBOL 4-1
OpenVMS Alpha4-1
Windows NT Alpha4-1

Documentation
offering comments7-21
ordering 7-22

Documentation Sets 7-21

F
FACTORIAL 7-9
File Organization

INDEXED 7-13
LINE SEQUENTIAL 7-12
RELATIVE 7-12
SEQUENTIAL 7-11

File Status Values 7-13
-fips 6-11
FUSE 4-4

I
ICD 4-6
INTEGER 7-9
INTEGER-OF-DATE 7-9
INTEGER-OF-DAY 7-9
INTEGER-PART 7-9
Interactive Compiler Driver (ICD) 4-6
Intrinsic functions

Date Manipulation7-8
Programming Aids7-8
Relational7-8
Scientific/Mathematical7-8
Statistical/Accounting7-8
String Manipulation7-8

K
-K 6-14

L
-L 6-14
Ladebug 4-5
Language-Sensitive Editor (LSE) 4-1
-Ldir 6-14
LENGTH 7-10
-list 6-15
LOG 7-10
LOG10 7-10
LOWER 7-10
-lstring 6-15

M
-mach 6-15
man cobol 4-5
-map 6-16
-math_intermediate 6-16
MAX 7-10
MEAN 7-10
MEDIAN 7-10
Microsoft Developer Studio Debugger 4-9
MIDRANGE 7-10
Migration 1-3

between DIGITAL operating systems3-8
cross-platform compatibility7-1

from Other Vendors3-9
from VAX to Alpha 3-7

MIN 7-10
Mod 7-10

N
-names 6-17
-nationality 6-17
-nolocking 6-18
NUMVAL 7-10

O
-O 6-19
Online Documentation 4-4, 4-5
Online Services 7-21
Oracle CDD/Repository 4-3
Oracle DBMS 4-4
ORD 7-10
Ordering additional documentation 7-22
ORD-MAX 7-10
ORD-MIN 7-10

P
-p 6-20
Performance and Coverage Analyzer

(PCA) 4-3
PRESENT-VALUE 7-10
Program switches 7-4

R
RANDOM 7-10
RANGE 7-11
Record Management Services (RMS) 4-3
-relax_key_checking 6-20
Relief 1-1, 6-1
REM 7-11
REVERSE 7-11
-rsv 6-21

S
-seq 6-22
-shared 6-22
-show 6-22

-show copy 6-7
-show xrefkeyword 6-7
SIN 7-11
Source Code Analyzer (SCA) 4-2
SQRT 7-11
STANDARD-DEVIATION 7-11
-std 6-23
SUM 7-11
Support 1-2
Switches

setting inside your program7-4
setting outside your program7-5

System Services 4-3

T
-t 6-24
TAN 7-11
-taso 6-24
-tps 6-24
-trunc 6-25

U
UPPER-CASE 7-11

V
-V 6-25
-v 6-25
VARIANCE 7-11

W
-w 6-26
-warn 6-27
WHEN-COMPILED 7-11
WinDbg 4-8

X
-xref 6-27
-xref_stdout 6-28

Y
Y2K 2-3

	DIGITAL COBOL
	Multiplatform Overview & Compatibility Guide
	Contents
	Preface
	1 Why You Need This Book...
	2 ...And Why We Wrote This Book
	3 Our DIGITAL COBOL Genealogy
	4 Developing, Debugging, and Maintaining COBOL Programs
	5 Compiling, Linking, and Running
	6 Modifying the COBOL Command
	7 Useful Summaries and Tables
	Index

	Preface
	Who Should Read This Book
	Conventions
	Acknowledgment

	Why You Need This Book...
	Reassurance
	Support
	Accessibility
	Migration and Compatibility

	...And Why We Wrote This Book
	DIGITAL COBOL: Continuous Progress, and Stability
	Computing Styles and Working Styles
	From Timeshare to Interactive
	Client-Server
	...And Beyond
	The Year 2000—Are Your Programs Ready?

	About Goals
	One Picture=How Many Words?

	Our High Standards
	Your Valuable Data
	Your Valuable Users
	Extensions
	Tools—More Power for your Programming
	Options
	Resources
	The Final "Why"

	Our DIGITAL COBOL Genealogy
	First, a Quick History of COBOL
	Our Family History
	DIGITAL VAX COBOL
	Development
	The Product

	DIGITAL COBOL
	Development
	The Product

	Migration—What’s Involved?
	Migration from VAX to Alpha
	Migration between Our Operating Systems
	Migration from Other Vendors
	Where Do We Go from Here?

	Developing, Debugging, and Maintaining COBOL Programs
	OpenVMS Features: DIGITAL COBOL on VAX and Alpha
	Language-Sensitive Editor (LSE)
	Source Code Analyzer (SCA)
	Debugger
	Code Management System (CMS)
	Performance and Coverage Analyzer (PCA)
	Record Management Services (RMS)
	System Services
	Oracle CDD/Repository
	Oracle DBMS
	Online Documentation

	DIGITAL COBOL for DIGITAL UNIX
	FUSE
	Ladebug
	Online Documentation

	DIGITAL COBOL for Windows NT Alpha
	Interactive Compiler Driver (ICD)
	WinDbg
	Microsoft Developer Studio Debugger
	CMS Client for Windows NT
	Online Documentation

	Compiling, Linking, and Running
	Command Sequence and Format
	Simple Compile-Link-Run Commands
	Compile-Link-Run on OpenVMS VAX
	Compile-Link-Run on OpenVMS Alpha
	Compile-Link-Run on DIGITAL UNIX
	Compile-Link-Run on Windows NT Alpha

	Modifying the COBOL Command
	Qualifiers, Flags, Options...
	Example COBOL /ALIGNMENT=PADDING myprogram.cob

	Useful Summaries and Tables
	Cross-Platform Compatibility
	COB$SWITCHES, cob_switches
	Setting Switches Inside Your Program
	Setting Switches Outside Your Program
	OpenVMS Switches
	DIGITAL UNIX Switches
	Windows NT ALPHA Switches

	Four-Platform Example to Evaluates Switches

	Intrinsic Functions
	I/O Statements
	File Status Values
	Character Codes
	Related Documentation
	Documentation Sets

	Corresponding with Us
	Documentation Comments

	Online Services
	How to Order Additional Documentation
	Symbols
	A
	C
	D
	F
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y

	Index

